{"title":"运动体积:人体运动流形的可视化","authors":"Masaki Oshita","doi":"10.1145/3359997.3365684","DOIUrl":null,"url":null,"abstract":"The understanding of human motion is important in many areas such as sports, dance, and animation. In this paper, we propose a method for visualizing the manifold of human motions. A motion manifold is defined by a set of motions in a specific motion form. Our method visualizes the ranges of time-varying positions and orientations of a body part by generating volumetric shapes for representing them. It selects representative keyposes from the keyposes of all input motions to visualize the range of keyposes at each key timing. A geometrical volume that contains the trajectories from all input motions is generated for each body part. In addition, a geometrical volume that contains the orientations from all input motions is generated for a sample point on the trajectory. The user can understand the motion manifold by visualizing these motion volumes. In this paper, we present some experimental examples for a tennis shot form.","PeriodicalId":448139,"journal":{"name":"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry","volume":"609 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Motion Volume: Visualization of Human Motion Manifolds\",\"authors\":\"Masaki Oshita\",\"doi\":\"10.1145/3359997.3365684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The understanding of human motion is important in many areas such as sports, dance, and animation. In this paper, we propose a method for visualizing the manifold of human motions. A motion manifold is defined by a set of motions in a specific motion form. Our method visualizes the ranges of time-varying positions and orientations of a body part by generating volumetric shapes for representing them. It selects representative keyposes from the keyposes of all input motions to visualize the range of keyposes at each key timing. A geometrical volume that contains the trajectories from all input motions is generated for each body part. In addition, a geometrical volume that contains the orientations from all input motions is generated for a sample point on the trajectory. The user can understand the motion manifold by visualizing these motion volumes. In this paper, we present some experimental examples for a tennis shot form.\",\"PeriodicalId\":448139,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry\",\"volume\":\"609 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3359997.3365684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3359997.3365684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion Volume: Visualization of Human Motion Manifolds
The understanding of human motion is important in many areas such as sports, dance, and animation. In this paper, we propose a method for visualizing the manifold of human motions. A motion manifold is defined by a set of motions in a specific motion form. Our method visualizes the ranges of time-varying positions and orientations of a body part by generating volumetric shapes for representing them. It selects representative keyposes from the keyposes of all input motions to visualize the range of keyposes at each key timing. A geometrical volume that contains the trajectories from all input motions is generated for each body part. In addition, a geometrical volume that contains the orientations from all input motions is generated for a sample point on the trajectory. The user can understand the motion manifold by visualizing these motion volumes. In this paper, we present some experimental examples for a tennis shot form.