海岸高频雷达电离层杂波特征研究

Y. Chung, L. Z. Chuang, Yu Ru Chen, Y. Yang, I. Tsui
{"title":"海岸高频雷达电离层杂波特征研究","authors":"Y. Chung, L. Z. Chuang, Yu Ru Chen, Y. Yang, I. Tsui","doi":"10.1109/OCEANSKOBE.2018.8558793","DOIUrl":null,"url":null,"abstract":"High frequency (HF) radar can overcome the limits caused by the curvature of the earth when its electromagnetic wave operated over high conductivity sea water. The HF radar spectrum is critical for large-area current mapping because of mechanism of Bragg resonance. Taiwan is located in an equatorial ionization anomaly area, in which the ionosphere causes strong interference on HF radar bands that may limit system performance. The unwanted radar echoes, called ionospheric clutter, are of various types with time-variable and range-specific properties, which require different suppression techniques. Additionally, these radar echoes could yield ionospheric information as a by-product of an HF radar system function. It is therefore critical to understand the regional characteristics of these ionospheric clutter phenomena. In this study, we first identify the ionospheric clutter boundaries for the Doppler spectrum range. Then, the distribution pattern of the spectra for identified areas was analyzed to determine the characteristics of ionospheric clutter and the extent to which the ionospheric clutter affects the system. The identified echoes at these ranges are presumed mainly to come from the E-layer, which may influence the system performance in those areas. The results show there exist a similarity of distribution in spectral density and DOAs which ionospheric clutter occurs. Hence, through aforementioned analysis can help distinguish the regions in which ionospheric clutter occurs and provide an opportunity for noise suppression strategies.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characteristic Investigation of Ionospheric Clutter of a Coastal High-Frequency Radar\",\"authors\":\"Y. Chung, L. Z. Chuang, Yu Ru Chen, Y. Yang, I. Tsui\",\"doi\":\"10.1109/OCEANSKOBE.2018.8558793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High frequency (HF) radar can overcome the limits caused by the curvature of the earth when its electromagnetic wave operated over high conductivity sea water. The HF radar spectrum is critical for large-area current mapping because of mechanism of Bragg resonance. Taiwan is located in an equatorial ionization anomaly area, in which the ionosphere causes strong interference on HF radar bands that may limit system performance. The unwanted radar echoes, called ionospheric clutter, are of various types with time-variable and range-specific properties, which require different suppression techniques. Additionally, these radar echoes could yield ionospheric information as a by-product of an HF radar system function. It is therefore critical to understand the regional characteristics of these ionospheric clutter phenomena. In this study, we first identify the ionospheric clutter boundaries for the Doppler spectrum range. Then, the distribution pattern of the spectra for identified areas was analyzed to determine the characteristics of ionospheric clutter and the extent to which the ionospheric clutter affects the system. The identified echoes at these ranges are presumed mainly to come from the E-layer, which may influence the system performance in those areas. The results show there exist a similarity of distribution in spectral density and DOAs which ionospheric clutter occurs. Hence, through aforementioned analysis can help distinguish the regions in which ionospheric clutter occurs and provide an opportunity for noise suppression strategies.\",\"PeriodicalId\":441405,\"journal\":{\"name\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSKOBE.2018.8558793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8558793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高频雷达的电磁波在高导电性海水上工作时,可以克服地球曲率的限制。由于高频雷达的布拉格共振机制,高频雷达频谱对大面积电流测绘至关重要。台湾地处赤道电离异常区,电离层对高频雷达波段产生强烈干扰,可能限制系统性能。不需要的雷达回波,称为电离层杂波,有各种类型,具有时变和距离特定的特性,需要不同的抑制技术。此外,这些雷达回波可以作为高频雷达系统功能的副产品产生电离层信息。因此,了解这些电离层杂波现象的区域特征是至关重要的。在本研究中,我们首先确定了多普勒频谱范围的电离层杂波边界。然后,分析识别区域的光谱分布规律,确定电离层杂波的特征以及电离层杂波对系统的影响程度。假定在这些范围内识别的回波主要来自e层,这可能会影响系统在这些区域的性能。结果表明,电离层杂波的谱密度和doa分布具有相似性。因此,通过上述分析可以帮助区分电离层杂波发生的区域,并为噪声抑制策略提供机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristic Investigation of Ionospheric Clutter of a Coastal High-Frequency Radar
High frequency (HF) radar can overcome the limits caused by the curvature of the earth when its electromagnetic wave operated over high conductivity sea water. The HF radar spectrum is critical for large-area current mapping because of mechanism of Bragg resonance. Taiwan is located in an equatorial ionization anomaly area, in which the ionosphere causes strong interference on HF radar bands that may limit system performance. The unwanted radar echoes, called ionospheric clutter, are of various types with time-variable and range-specific properties, which require different suppression techniques. Additionally, these radar echoes could yield ionospheric information as a by-product of an HF radar system function. It is therefore critical to understand the regional characteristics of these ionospheric clutter phenomena. In this study, we first identify the ionospheric clutter boundaries for the Doppler spectrum range. Then, the distribution pattern of the spectra for identified areas was analyzed to determine the characteristics of ionospheric clutter and the extent to which the ionospheric clutter affects the system. The identified echoes at these ranges are presumed mainly to come from the E-layer, which may influence the system performance in those areas. The results show there exist a similarity of distribution in spectral density and DOAs which ionospheric clutter occurs. Hence, through aforementioned analysis can help distinguish the regions in which ionospheric clutter occurs and provide an opportunity for noise suppression strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信