利用脸和名字信息在新闻照片中寻找面孔

G. Bush, President George Bush, G. Bush
{"title":"利用脸和名字信息在新闻照片中寻找面孔","authors":"G. Bush, President George Bush, G. Bush","doi":"10.1109/SIU.2006.1659879","DOIUrl":null,"url":null,"abstract":"We propose a method to associate names and faces for querying people in large news photo collections. On the assumption that a person's face is likely to appear when his/her name is mentioned in the caption, first all the faces associated with the query name are selected. Among these faces, there could be many faces corresponding to the queried person in different conditions, poses and times, but there could also be other faces corresponding to other people in the caption or some non-face images due to the errors in the face detection method used. However, in most cases, the number of corresponding faces of the queried person will be large, and these faces will be more similar to each other than to others. When the similarities of faces are represented in a graph structure, the set of most similar faces will be the densest component in the graph. In this study, we propose a graph-based method to find the most similar subset among the set of possible faces associated with the query name, where the most similar subset is likely to correspond to the faces of the queried person","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Faces in News Photos Using Both Face and Name Information\",\"authors\":\"G. Bush, President George Bush, G. Bush\",\"doi\":\"10.1109/SIU.2006.1659879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to associate names and faces for querying people in large news photo collections. On the assumption that a person's face is likely to appear when his/her name is mentioned in the caption, first all the faces associated with the query name are selected. Among these faces, there could be many faces corresponding to the queried person in different conditions, poses and times, but there could also be other faces corresponding to other people in the caption or some non-face images due to the errors in the face detection method used. However, in most cases, the number of corresponding faces of the queried person will be large, and these faces will be more similar to each other than to others. When the similarities of faces are represented in a graph structure, the set of most similar faces will be the densest component in the graph. In this study, we propose a graph-based method to find the most similar subset among the set of possible faces associated with the query name, where the most similar subset is likely to correspond to the faces of the queried person\",\"PeriodicalId\":415037,\"journal\":{\"name\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2006.1659879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种关联姓名和面孔的方法,用于查询大型新闻图片集中的人物。假设在标题中提到一个人的名字时,他/她的脸很可能出现,首先选择与查询名称相关的所有脸。在这些人脸中,在不同的条件、姿势和时间下,可能会有许多与被查询的人对应的人脸,但由于所使用的人脸检测方法的错误,也可能在标题中存在其他人脸或一些非人脸图像中对应其他人的人脸。然而,在大多数情况下,被查询的人对应的面孔数量会很大,而且这些面孔彼此之间的相似性会比其他面孔更大。当在图结构中表示面的相似性时,最相似面的集合将是图中密度最大的组成部分。在这项研究中,我们提出了一种基于图的方法来寻找与查询名称相关的可能面孔集合中最相似的子集,其中最相似的子集可能对应于被查询人的面孔
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Faces in News Photos Using Both Face and Name Information
We propose a method to associate names and faces for querying people in large news photo collections. On the assumption that a person's face is likely to appear when his/her name is mentioned in the caption, first all the faces associated with the query name are selected. Among these faces, there could be many faces corresponding to the queried person in different conditions, poses and times, but there could also be other faces corresponding to other people in the caption or some non-face images due to the errors in the face detection method used. However, in most cases, the number of corresponding faces of the queried person will be large, and these faces will be more similar to each other than to others. When the similarities of faces are represented in a graph structure, the set of most similar faces will be the densest component in the graph. In this study, we propose a graph-based method to find the most similar subset among the set of possible faces associated with the query name, where the most similar subset is likely to correspond to the faces of the queried person
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信