小信号神经模型及其在模型参数确定中的应用

A. Basu, P. Hasler
{"title":"小信号神经模型及其在模型参数确定中的应用","authors":"A. Basu, P. Hasler","doi":"10.1109/BIOCAS.2010.5709599","DOIUrl":null,"url":null,"abstract":"This paper introduces the use of the concept of small signal analysis, commonly used in circuit design, for understanding neural models. We show that neural models, varying in complexity from Hodgkin-Huxley to Integrate and fire have similar small signal models when their corresponding differential equations are close to the same bifurcation with respect to input current. The small signal model allows circuit designers to intuitively understand the behavior of complicated differential equations in a simple way. We use small-signal models for deriving parameters for a simple neural model (like resonate and fire) from a more complicated but biophysically relevant one like Morris-Lecar. We show similarity in the sub threshold behavior of the simple and complicated model when they are close to a Hopf bifurcation and a Saddle-node bifurcation. Hence, this is useful to correctly tune simple neural models for large scale cortical simulations.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Small-signal neural models and its application to determining model parameters\",\"authors\":\"A. Basu, P. Hasler\",\"doi\":\"10.1109/BIOCAS.2010.5709599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the use of the concept of small signal analysis, commonly used in circuit design, for understanding neural models. We show that neural models, varying in complexity from Hodgkin-Huxley to Integrate and fire have similar small signal models when their corresponding differential equations are close to the same bifurcation with respect to input current. The small signal model allows circuit designers to intuitively understand the behavior of complicated differential equations in a simple way. We use small-signal models for deriving parameters for a simple neural model (like resonate and fire) from a more complicated but biophysically relevant one like Morris-Lecar. We show similarity in the sub threshold behavior of the simple and complicated model when they are close to a Hopf bifurcation and a Saddle-node bifurcation. Hence, this is useful to correctly tune simple neural models for large scale cortical simulations.\",\"PeriodicalId\":440499,\"journal\":{\"name\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2010.5709599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了利用电路设计中常用的小信号分析的概念来理解神经模型。我们表明,从霍奇金-赫胥黎到积分和火的复杂程度不同的神经模型,当它们对应的微分方程相对于输入电流接近相同的分岔时,具有相似的小信号模型。小信号模型使电路设计人员能够以简单的方式直观地理解复杂微分方程的行为。我们使用小信号模型从一个更复杂但与生物物理相关的模型(如Morris-Lecar)中为一个简单的神经模型(如共振和火)导出参数。在Hopf分岔和鞍节点分岔附近,简单模型和复杂模型的亚阈值行为具有相似性。因此,这对于正确调整简单的神经模型以进行大规模皮层模拟是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small-signal neural models and its application to determining model parameters
This paper introduces the use of the concept of small signal analysis, commonly used in circuit design, for understanding neural models. We show that neural models, varying in complexity from Hodgkin-Huxley to Integrate and fire have similar small signal models when their corresponding differential equations are close to the same bifurcation with respect to input current. The small signal model allows circuit designers to intuitively understand the behavior of complicated differential equations in a simple way. We use small-signal models for deriving parameters for a simple neural model (like resonate and fire) from a more complicated but biophysically relevant one like Morris-Lecar. We show similarity in the sub threshold behavior of the simple and complicated model when they are close to a Hopf bifurcation and a Saddle-node bifurcation. Hence, this is useful to correctly tune simple neural models for large scale cortical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信