{"title":"用移位拉普拉斯多项式和费伯多项式预处理亥姆霍兹方程","authors":"L. G. Ramos, O. Sète, R. Nabben","doi":"10.1553/etna_vol54s534","DOIUrl":null,"url":null,"abstract":"We introduce a new polynomial preconditioner for solving the discretized Helmholtz equation preconditioned with the complex shifted Laplace (CSL) operator. We exploit the localization of the spectrum of the CSL-preconditioned system to approximately enclose the eigenvalues by a non-convex ‘bratwurst’ set. On this set, we expand the function 1/z into a Faber series. Truncating the series gives a polynomial, which we apply to the Helmholtz matrix preconditioned by the shifted Laplacian to obtain a new preconditioner, the Faber preconditioner. We prove that the Faber preconditioner is nonsingular for degrees one and two of the truncated series. Our numerical experiments (for problems with constant and varying wavenumber) show that the Faber preconditioner reduces the number of GMRES iterations.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"360 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preconditioning the Helmholtz equation with the shifted Laplacian and Faber polynomials\",\"authors\":\"L. G. Ramos, O. Sète, R. Nabben\",\"doi\":\"10.1553/etna_vol54s534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new polynomial preconditioner for solving the discretized Helmholtz equation preconditioned with the complex shifted Laplace (CSL) operator. We exploit the localization of the spectrum of the CSL-preconditioned system to approximately enclose the eigenvalues by a non-convex ‘bratwurst’ set. On this set, we expand the function 1/z into a Faber series. Truncating the series gives a polynomial, which we apply to the Helmholtz matrix preconditioned by the shifted Laplacian to obtain a new preconditioner, the Faber preconditioner. We prove that the Faber preconditioner is nonsingular for degrees one and two of the truncated series. Our numerical experiments (for problems with constant and varying wavenumber) show that the Faber preconditioner reduces the number of GMRES iterations.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"360 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol54s534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol54s534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preconditioning the Helmholtz equation with the shifted Laplacian and Faber polynomials
We introduce a new polynomial preconditioner for solving the discretized Helmholtz equation preconditioned with the complex shifted Laplace (CSL) operator. We exploit the localization of the spectrum of the CSL-preconditioned system to approximately enclose the eigenvalues by a non-convex ‘bratwurst’ set. On this set, we expand the function 1/z into a Faber series. Truncating the series gives a polynomial, which we apply to the Helmholtz matrix preconditioned by the shifted Laplacian to obtain a new preconditioner, the Faber preconditioner. We prove that the Faber preconditioner is nonsingular for degrees one and two of the truncated series. Our numerical experiments (for problems with constant and varying wavenumber) show that the Faber preconditioner reduces the number of GMRES iterations.