关于切比雪夫多项式的线性组合

Dragan Stankov
{"title":"关于切比雪夫多项式的线性组合","authors":"Dragan Stankov","doi":"10.2298/PIM150220001S","DOIUrl":null,"url":null,"abstract":"We investigate an infinite sequence of polynomials of the form: a0Tn(x) + a1Tn 1(x) + · · · + amTn m(x) where (a0, a1, . . . , am) is a fixed m-tuple of real numbers, a0, am 6 0, Ti(x) are Chebyshev polynomials of the first kind, n = m, m + 1, m + 2, . . . Here we analyze the structure of the set of zeros of such polynomial, depending on A and its limit points when n tends to infinity. Also the expression of envelope of the polynomial is given. An application in number theory, more precise, in the theory of Pisot and Salem numbers, is presented.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"415 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ON LINEAR COMBINATIONS OF CHEBYSHEV POLYNOMIALS\",\"authors\":\"Dragan Stankov\",\"doi\":\"10.2298/PIM150220001S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate an infinite sequence of polynomials of the form: a0Tn(x) + a1Tn 1(x) + · · · + amTn m(x) where (a0, a1, . . . , am) is a fixed m-tuple of real numbers, a0, am 6 0, Ti(x) are Chebyshev polynomials of the first kind, n = m, m + 1, m + 2, . . . Here we analyze the structure of the set of zeros of such polynomial, depending on A and its limit points when n tends to infinity. Also the expression of envelope of the polynomial is given. An application in number theory, more precise, in the theory of Pisot and Salem numbers, is presented.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"415 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM150220001S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM150220001S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了形式为:a0Tn(x) + a1Tn 1(x) +···+ amTn m(x)的无穷多项式序列,其中(a0, a1,…, am)是实数的固定m元组,a0, am 6 0, Ti(x)是第一类Chebyshev多项式,n = m, m + 1, m + 2,…这里我们分析了这种多项式的零集的结构,这取决于A和当n趋于无穷时它的极限点。并给出了多项式包络线的表达式。在数论中,更准确地说,在Pisot数和Salem数的理论中,给出了一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON LINEAR COMBINATIONS OF CHEBYSHEV POLYNOMIALS
We investigate an infinite sequence of polynomials of the form: a0Tn(x) + a1Tn 1(x) + · · · + amTn m(x) where (a0, a1, . . . , am) is a fixed m-tuple of real numbers, a0, am 6 0, Ti(x) are Chebyshev polynomials of the first kind, n = m, m + 1, m + 2, . . . Here we analyze the structure of the set of zeros of such polynomial, depending on A and its limit points when n tends to infinity. Also the expression of envelope of the polynomial is given. An application in number theory, more precise, in the theory of Pisot and Salem numbers, is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信