{"title":"关于切比雪夫多项式的线性组合","authors":"Dragan Stankov","doi":"10.2298/PIM150220001S","DOIUrl":null,"url":null,"abstract":"We investigate an infinite sequence of polynomials of the form: a0Tn(x) + a1Tn 1(x) + · · · + amTn m(x) where (a0, a1, . . . , am) is a fixed m-tuple of real numbers, a0, am 6 0, Ti(x) are Chebyshev polynomials of the first kind, n = m, m + 1, m + 2, . . . Here we analyze the structure of the set of zeros of such polynomial, depending on A and its limit points when n tends to infinity. Also the expression of envelope of the polynomial is given. An application in number theory, more precise, in the theory of Pisot and Salem numbers, is presented.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"415 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ON LINEAR COMBINATIONS OF CHEBYSHEV POLYNOMIALS\",\"authors\":\"Dragan Stankov\",\"doi\":\"10.2298/PIM150220001S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate an infinite sequence of polynomials of the form: a0Tn(x) + a1Tn 1(x) + · · · + amTn m(x) where (a0, a1, . . . , am) is a fixed m-tuple of real numbers, a0, am 6 0, Ti(x) are Chebyshev polynomials of the first kind, n = m, m + 1, m + 2, . . . Here we analyze the structure of the set of zeros of such polynomial, depending on A and its limit points when n tends to infinity. Also the expression of envelope of the polynomial is given. An application in number theory, more precise, in the theory of Pisot and Salem numbers, is presented.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"415 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM150220001S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM150220001S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
我们研究了形式为:a0Tn(x) + a1Tn 1(x) +···+ amTn m(x)的无穷多项式序列,其中(a0, a1,…, am)是实数的固定m元组,a0, am 6 0, Ti(x)是第一类Chebyshev多项式,n = m, m + 1, m + 2,…这里我们分析了这种多项式的零集的结构,这取决于A和当n趋于无穷时它的极限点。并给出了多项式包络线的表达式。在数论中,更准确地说,在Pisot数和Salem数的理论中,给出了一个应用。
We investigate an infinite sequence of polynomials of the form: a0Tn(x) + a1Tn 1(x) + · · · + amTn m(x) where (a0, a1, . . . , am) is a fixed m-tuple of real numbers, a0, am 6 0, Ti(x) are Chebyshev polynomials of the first kind, n = m, m + 1, m + 2, . . . Here we analyze the structure of the set of zeros of such polynomial, depending on A and its limit points when n tends to infinity. Also the expression of envelope of the polynomial is given. An application in number theory, more precise, in the theory of Pisot and Salem numbers, is presented.