基于L∞最小化的基于运动结构的手眼标定

Jan Heller, M. Havlena, A. Sugimoto, T. Pajdla
{"title":"基于L∞最小化的基于运动结构的手眼标定","authors":"Jan Heller, M. Havlena, A. Sugimoto, T. Pajdla","doi":"10.1109/CVPR.2011.5995629","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for so-called hand-eye calibration. Using a calibration target is not possible for many applications of hand-eye calibration. In such situations Structure-from-Motion approach of hand-eye calibration is commonly used to recover the camera poses up to scaling. The presented method takes advantage of recent results in the L∞-norm optimization using Second-Order Cone Programming (SOCP) to recover the correct scale. Further, the correctly scaled displacement of the hand-eye transformation is recovered solely from the image correspondences and robot measurements, and is guaranteed to be globally optimal with respect to the L∞-norm. The method is experimentally validated using both synthetic and real world datasets.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"414 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Structure-from-motion based hand-eye calibration using L∞ minimization\",\"authors\":\"Jan Heller, M. Havlena, A. Sugimoto, T. Pajdla\",\"doi\":\"10.1109/CVPR.2011.5995629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for so-called hand-eye calibration. Using a calibration target is not possible for many applications of hand-eye calibration. In such situations Structure-from-Motion approach of hand-eye calibration is commonly used to recover the camera poses up to scaling. The presented method takes advantage of recent results in the L∞-norm optimization using Second-Order Cone Programming (SOCP) to recover the correct scale. Further, the correctly scaled displacement of the hand-eye transformation is recovered solely from the image correspondences and robot measurements, and is guaranteed to be globally optimal with respect to the L∞-norm. The method is experimentally validated using both synthetic and real world datasets.\",\"PeriodicalId\":445398,\"journal\":{\"name\":\"CVPR 2011\",\"volume\":\"414 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVPR 2011\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2011.5995629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

提出了一种新的手眼标定方法。对于手眼校准的许多应用来说,使用校准目标是不可能的。在这种情况下,通常使用手眼校准的运动结构方法来恢复相机的姿势。该方法利用近年来二阶锥规划(SOCP)的L∞范数优化结果来恢复正确的尺度。此外,手眼变换的正确缩放位移仅从图像对应和机器人测量中恢复,并且保证相对于L∞范数是全局最优的。该方法使用合成和真实世界的数据集进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-from-motion based hand-eye calibration using L∞ minimization
This paper presents a novel method for so-called hand-eye calibration. Using a calibration target is not possible for many applications of hand-eye calibration. In such situations Structure-from-Motion approach of hand-eye calibration is commonly used to recover the camera poses up to scaling. The presented method takes advantage of recent results in the L∞-norm optimization using Second-Order Cone Programming (SOCP) to recover the correct scale. Further, the correctly scaled displacement of the hand-eye transformation is recovered solely from the image correspondences and robot measurements, and is guaranteed to be globally optimal with respect to the L∞-norm. The method is experimentally validated using both synthetic and real world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信