基于LMS算法的在线异常检测方法

Ziyu Wang, Jiahai Yang, Fuliang Li
{"title":"基于LMS算法的在线异常检测方法","authors":"Ziyu Wang, Jiahai Yang, Fuliang Li","doi":"10.1109/APNOMS.2014.6996537","DOIUrl":null,"url":null,"abstract":"Anomaly detection has been a hot topic in recent years due to its capability of detecting zero attacks. In this paper, we propose a new on-line anomaly detection method based on LMS algorithm. The basic idea of the LMS-based detector is to predict IGTE using IGFE, given the high linear correlation between them. Using the artificial synthetic data, it is shown that the LMS-based detector possesses strong detection capability, and its false positive rate is within acceptable scope.","PeriodicalId":269952,"journal":{"name":"The 16th Asia-Pacific Network Operations and Management Symposium","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An on-line anomaly detection method based on LMS algorithm\",\"authors\":\"Ziyu Wang, Jiahai Yang, Fuliang Li\",\"doi\":\"10.1109/APNOMS.2014.6996537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection has been a hot topic in recent years due to its capability of detecting zero attacks. In this paper, we propose a new on-line anomaly detection method based on LMS algorithm. The basic idea of the LMS-based detector is to predict IGTE using IGFE, given the high linear correlation between them. Using the artificial synthetic data, it is shown that the LMS-based detector possesses strong detection capability, and its false positive rate is within acceptable scope.\",\"PeriodicalId\":269952,\"journal\":{\"name\":\"The 16th Asia-Pacific Network Operations and Management Symposium\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 16th Asia-Pacific Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APNOMS.2014.6996537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 16th Asia-Pacific Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APNOMS.2014.6996537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

异常检测由于具有检测零攻击的能力而成为近年来研究的热点。本文提出了一种基于LMS算法的在线异常检测方法。基于lms的探测器的基本思想是利用IGFE预测IGTE,因为它们之间具有高度的线性相关性。利用人工合成数据表明,基于lms的检测器具有较强的检测能力,其假阳性率在可接受范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An on-line anomaly detection method based on LMS algorithm
Anomaly detection has been a hot topic in recent years due to its capability of detecting zero attacks. In this paper, we propose a new on-line anomaly detection method based on LMS algorithm. The basic idea of the LMS-based detector is to predict IGTE using IGFE, given the high linear correlation between them. Using the artificial synthetic data, it is shown that the LMS-based detector possesses strong detection capability, and its false positive rate is within acceptable scope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信