关于循环误差概率的说明

Z. Govindarajulu
{"title":"关于循环误差概率的说明","authors":"Z. Govindarajulu","doi":"10.1002/NAV.3800330308","DOIUrl":null,"url":null,"abstract":"An approximation for P(X2 + Y2 ≤ K2σ21) based on an unpublished result of Kleinecke is derived, where X and Y are independent normal variables having zero means and variances σ21 and σ22 and σ1 ≥ σ2. Also, we provide asymptotic expressions for the probabilities for large values of β = K2(1 - c2)/4c2 where c = σ2/σ1. These are illustrated by comparing with values tabulated by Harter [6]. Solution of K for specified P and c is also considered. The main point of this note is that simple and easily calculable approximations for P and K can be developed and there is no need for numerical evaluation of integrals.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A note on circular error probabilities\",\"authors\":\"Z. Govindarajulu\",\"doi\":\"10.1002/NAV.3800330308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approximation for P(X2 + Y2 ≤ K2σ21) based on an unpublished result of Kleinecke is derived, where X and Y are independent normal variables having zero means and variances σ21 and σ22 and σ1 ≥ σ2. Also, we provide asymptotic expressions for the probabilities for large values of β = K2(1 - c2)/4c2 where c = σ2/σ1. These are illustrated by comparing with values tabulated by Harter [6]. Solution of K for specified P and c is also considered. The main point of this note is that simple and easily calculable approximations for P and K can be developed and there is no need for numerical evaluation of integrals.\",\"PeriodicalId\":431817,\"journal\":{\"name\":\"Naval Research Logistics Quarterly\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/NAV.3800330308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800330308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于Kleinecke未发表的结果,导出了P(X2 + Y2≤K2σ21)的近似,其中X和Y是均值为零,方差为σ21和σ22, σ1≥σ2的独立正态变量。此外,我们还给出了β = K2(1 - c2)/4c2当c = σ2/σ1时较大值的概率的渐近表达式。这些都是通过与Harter[6]表中的值进行比较来说明的。同时考虑了K对特定P和c的解。本文的主要观点是,对于P和K可以建立简单且易于计算的近似,并且不需要对积分进行数值计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on circular error probabilities
An approximation for P(X2 + Y2 ≤ K2σ21) based on an unpublished result of Kleinecke is derived, where X and Y are independent normal variables having zero means and variances σ21 and σ22 and σ1 ≥ σ2. Also, we provide asymptotic expressions for the probabilities for large values of β = K2(1 - c2)/4c2 where c = σ2/σ1. These are illustrated by comparing with values tabulated by Harter [6]. Solution of K for specified P and c is also considered. The main point of this note is that simple and easily calculable approximations for P and K can be developed and there is no need for numerical evaluation of integrals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信