{"title":"基于环境偏差的群体机器人自适应装配","authors":"Jean-Marc Montanier, P. Haddow","doi":"10.1109/ICES.2014.7008739","DOIUrl":null,"url":null,"abstract":"A swarm of robots may face challenges in unknown environments where self-assembly is a necessity e.g. crossing difficult areas. When exploring such environments, the self-assembly process has to be triggered only where needed and only for those robots required, leaving other robots to continue exploration. Further, self-assembled robots should dis-assemble when assembled structures are no longer required. Strategies have thus to be learned to trigger self-assembly and dis-assembly so as to meet the needs of the environment. Research has focused on the learning of strategies where all robots of the swarm had to adopt one common strategy: either self-assembly or dis-assembly. The work herein studies how strategies using both self-assembly and dis-assembly can be learned within the same swarm. Further, the effect of the different environments on this challenge is presented.","PeriodicalId":432958,"journal":{"name":"2014 IEEE International Conference on Evolvable Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive self-assembly in swarm robotics through environmental bias\",\"authors\":\"Jean-Marc Montanier, P. Haddow\",\"doi\":\"10.1109/ICES.2014.7008739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A swarm of robots may face challenges in unknown environments where self-assembly is a necessity e.g. crossing difficult areas. When exploring such environments, the self-assembly process has to be triggered only where needed and only for those robots required, leaving other robots to continue exploration. Further, self-assembled robots should dis-assemble when assembled structures are no longer required. Strategies have thus to be learned to trigger self-assembly and dis-assembly so as to meet the needs of the environment. Research has focused on the learning of strategies where all robots of the swarm had to adopt one common strategy: either self-assembly or dis-assembly. The work herein studies how strategies using both self-assembly and dis-assembly can be learned within the same swarm. Further, the effect of the different environments on this challenge is presented.\",\"PeriodicalId\":432958,\"journal\":{\"name\":\"2014 IEEE International Conference on Evolvable Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Evolvable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICES.2014.7008739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Evolvable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICES.2014.7008739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive self-assembly in swarm robotics through environmental bias
A swarm of robots may face challenges in unknown environments where self-assembly is a necessity e.g. crossing difficult areas. When exploring such environments, the self-assembly process has to be triggered only where needed and only for those robots required, leaving other robots to continue exploration. Further, self-assembled robots should dis-assemble when assembled structures are no longer required. Strategies have thus to be learned to trigger self-assembly and dis-assembly so as to meet the needs of the environment. Research has focused on the learning of strategies where all robots of the swarm had to adopt one common strategy: either self-assembly or dis-assembly. The work herein studies how strategies using both self-assembly and dis-assembly can be learned within the same swarm. Further, the effect of the different environments on this challenge is presented.