低负荷条件下汽轮机全环空末级气动与结构数值研究

Qi Di, Chen Yifeng, Lin Gang, Wenfu Li, Wei Tan
{"title":"低负荷条件下汽轮机全环空末级气动与结构数值研究","authors":"Qi Di, Chen Yifeng, Lin Gang, Wenfu Li, Wei Tan","doi":"10.1115/GT2020-16146","DOIUrl":null,"url":null,"abstract":"\n Operating at low load conditions may cause strong and non-synchronous unsteadiness and a high blade dynamic loading for the last stage blades (LSB). Full annulus models should be used to investigate the circumferential asymmetric flow unsteadiness and blade vibrations. Currently, although full annulus models have been applied to numerical aerodynamic studies, to authors’ knowledge, there is still no research including the full annulus in structural analysis due to the high computational cost. In this paper, an unsteady aerodynamic and structural coupled analysis method for an industrial steam turbine LSB using full annulus model under low load conditions is presented. To conduct finite element method (FEM) with limited computational resources, a new structural analysis procedure is proposed to calculate the dynamic stress.\n The aerodynamic analysis is conducted in both steady and unsteady computational fluid dynamics (CFD) calculations. The tip pressure ratio in the steady state calculations is used to predict the aerodynamic loading intensity. The unsteady results indicate typical flow characteristics under low load conditions, which show a big separation region behind the last rotor and tip vortex between last stator and rotor. Unsteady aerodynamic loading is mapped onto the blade surface as the excitation force. The structural analysis is performed to investigate the characteristics of blade vibrations and stress distributions of the full annulus LSB. Repeating the method, a reasonable characteristics curve of vibration stress against flow rates for LSB is calculated.","PeriodicalId":171265,"journal":{"name":"Volume 9: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Aerodynamic and Structural Numerical Investigation of Full Annulus Last Stage of Steam Turbine Under Low Load Conditions\",\"authors\":\"Qi Di, Chen Yifeng, Lin Gang, Wenfu Li, Wei Tan\",\"doi\":\"10.1115/GT2020-16146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Operating at low load conditions may cause strong and non-synchronous unsteadiness and a high blade dynamic loading for the last stage blades (LSB). Full annulus models should be used to investigate the circumferential asymmetric flow unsteadiness and blade vibrations. Currently, although full annulus models have been applied to numerical aerodynamic studies, to authors’ knowledge, there is still no research including the full annulus in structural analysis due to the high computational cost. In this paper, an unsteady aerodynamic and structural coupled analysis method for an industrial steam turbine LSB using full annulus model under low load conditions is presented. To conduct finite element method (FEM) with limited computational resources, a new structural analysis procedure is proposed to calculate the dynamic stress.\\n The aerodynamic analysis is conducted in both steady and unsteady computational fluid dynamics (CFD) calculations. The tip pressure ratio in the steady state calculations is used to predict the aerodynamic loading intensity. The unsteady results indicate typical flow characteristics under low load conditions, which show a big separation region behind the last rotor and tip vortex between last stator and rotor. Unsteady aerodynamic loading is mapped onto the blade surface as the excitation force. The structural analysis is performed to investigate the characteristics of blade vibrations and stress distributions of the full annulus LSB. Repeating the method, a reasonable characteristics curve of vibration stress against flow rates for LSB is calculated.\",\"PeriodicalId\":171265,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2020-16146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Steam Turbine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2020-16146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在低负荷条件下运行,会导致末级叶片产生强烈的非同步不稳定和高叶片动载荷。采用全环空模型研究叶片的周向非对称流动非定常和振动。目前,虽然全环空模型已经应用于数值气动研究,但据笔者所知,由于计算成本较高,目前还没有将全环空模型应用于结构分析的研究。本文提出了一种基于全环空模型的工业汽轮机LSB低负荷非定常气动与结构耦合分析方法。为了在有限的计算资源下进行有限元分析,提出了一种新的结构分析方法来计算动应力。在定常和非定常计算流体动力学(CFD)计算中进行了气动分析。采用稳态计算中的叶尖压力比来预测气动载荷强度。非定常结果显示了典型的低负荷工况下的流动特征:末转子后存在较大的分离区,末定子与转子之间存在尖涡。将非定常气动载荷作为激励力映射到叶片表面。对全环空LSB的叶片振动特性和应力分布进行了结构分析。重复此方法,计算出合理的振动应力随流量变化的特性曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerodynamic and Structural Numerical Investigation of Full Annulus Last Stage of Steam Turbine Under Low Load Conditions
Operating at low load conditions may cause strong and non-synchronous unsteadiness and a high blade dynamic loading for the last stage blades (LSB). Full annulus models should be used to investigate the circumferential asymmetric flow unsteadiness and blade vibrations. Currently, although full annulus models have been applied to numerical aerodynamic studies, to authors’ knowledge, there is still no research including the full annulus in structural analysis due to the high computational cost. In this paper, an unsteady aerodynamic and structural coupled analysis method for an industrial steam turbine LSB using full annulus model under low load conditions is presented. To conduct finite element method (FEM) with limited computational resources, a new structural analysis procedure is proposed to calculate the dynamic stress. The aerodynamic analysis is conducted in both steady and unsteady computational fluid dynamics (CFD) calculations. The tip pressure ratio in the steady state calculations is used to predict the aerodynamic loading intensity. The unsteady results indicate typical flow characteristics under low load conditions, which show a big separation region behind the last rotor and tip vortex between last stator and rotor. Unsteady aerodynamic loading is mapped onto the blade surface as the excitation force. The structural analysis is performed to investigate the characteristics of blade vibrations and stress distributions of the full annulus LSB. Repeating the method, a reasonable characteristics curve of vibration stress against flow rates for LSB is calculated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信