基于聚类的图书文献目录分析

Liangcai Gao, Zhi Tang, Xiaofan Lin, Xin Tao, Yimin Chu
{"title":"基于聚类的图书文献目录分析","authors":"Liangcai Gao, Zhi Tang, Xiaofan Lin, Xin Tao, Yimin Chu","doi":"10.1109/ICDAR.2009.143","DOIUrl":null,"url":null,"abstract":"Table of contents (TOC) recognition has attracted a great deal of attention in recent years. After reviewing the merits and drawbacks of the existing TOC recognition methods, we have observed that book documents are multi-page documents with intrinsic local format consistency. Based on this finding we introduce an automatic TOC analysis method through clustering. This method first detects the decorative elements in TOC pages. Then it learns a layout model used in the TOC pages through clustering. Finally, it generates TOC entries and extracts their hierarchical structure under the guidance of the model. More specifically, broken lines are taken into account in the method. Experimental results show that this method achieves high accuracy and efficiency. In addition, this method has been successfully applied in a commercial E-book production software package.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"2676 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of Book Documents' Table of Content Based on Clustering\",\"authors\":\"Liangcai Gao, Zhi Tang, Xiaofan Lin, Xin Tao, Yimin Chu\",\"doi\":\"10.1109/ICDAR.2009.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Table of contents (TOC) recognition has attracted a great deal of attention in recent years. After reviewing the merits and drawbacks of the existing TOC recognition methods, we have observed that book documents are multi-page documents with intrinsic local format consistency. Based on this finding we introduce an automatic TOC analysis method through clustering. This method first detects the decorative elements in TOC pages. Then it learns a layout model used in the TOC pages through clustering. Finally, it generates TOC entries and extracts their hierarchical structure under the guidance of the model. More specifically, broken lines are taken into account in the method. Experimental results show that this method achieves high accuracy and efficiency. In addition, this method has been successfully applied in a commercial E-book production software package.\",\"PeriodicalId\":433762,\"journal\":{\"name\":\"2009 10th International Conference on Document Analysis and Recognition\",\"volume\":\"2676 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2009.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目录识别是近年来备受关注的问题。在分析了现有TOC识别方法的优缺点后,我们发现图书文档是多页文档,具有内在的局部格式一致性。基于这一发现,我们引入了一种基于聚类的自动TOC分析方法。该方法首先检测TOC页面中的装饰元素。然后通过聚类学习TOC页面中使用的布局模型。最后,在模型的指导下生成TOC条目并提取其层次结构。更具体地说,该方法考虑了折线。实验结果表明,该方法具有较高的精度和效率。此外,该方法已成功应用于商业电子书制作软件包中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Book Documents' Table of Content Based on Clustering
Table of contents (TOC) recognition has attracted a great deal of attention in recent years. After reviewing the merits and drawbacks of the existing TOC recognition methods, we have observed that book documents are multi-page documents with intrinsic local format consistency. Based on this finding we introduce an automatic TOC analysis method through clustering. This method first detects the decorative elements in TOC pages. Then it learns a layout model used in the TOC pages through clustering. Finally, it generates TOC entries and extracts their hierarchical structure under the guidance of the model. More specifically, broken lines are taken into account in the method. Experimental results show that this method achieves high accuracy and efficiency. In addition, this method has been successfully applied in a commercial E-book production software package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信