基于判别性人脸深度估计的二维人脸识别改进

Jiyun Cui, Hao Zhang, Hu Han, S. Shan, Xilin Chen
{"title":"基于判别性人脸深度估计的二维人脸识别改进","authors":"Jiyun Cui, Hao Zhang, Hu Han, S. Shan, Xilin Chen","doi":"10.1109/ICB2018.2018.00031","DOIUrl":null,"url":null,"abstract":"As face recognition progresses from constrained scenarios to unconstrained scenarios, new challenges such as large pose, bad illumination, and partial occlusion, are encountered. While 3D or multi-modality RGB-D sensors are helpful for face recognition systems to achieve robustness against these challenges, the requirement of new sensors limits their application scenarios. In our paper, we propose a discriminative face depth estimation approach to improve 2D face recognition accuracies under unconstrained scenarios. Our discriminative depth estimation method uses a cascaded FCN and CNN architecture, in which FCN aims at recovering the depth from an RGB image, and CNN retains the separability of individual subjects. The estimated depth information is then used as a complementary modality to RGB for face recognition tasks. Experiments on two public datasets and a dataset we collect show that the proposed face recognition method using RGB and estimated depth information can achieve better accuracy than using RGB modality alone.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Improving 2D Face Recognition via Discriminative Face Depth Estimation\",\"authors\":\"Jiyun Cui, Hao Zhang, Hu Han, S. Shan, Xilin Chen\",\"doi\":\"10.1109/ICB2018.2018.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As face recognition progresses from constrained scenarios to unconstrained scenarios, new challenges such as large pose, bad illumination, and partial occlusion, are encountered. While 3D or multi-modality RGB-D sensors are helpful for face recognition systems to achieve robustness against these challenges, the requirement of new sensors limits their application scenarios. In our paper, we propose a discriminative face depth estimation approach to improve 2D face recognition accuracies under unconstrained scenarios. Our discriminative depth estimation method uses a cascaded FCN and CNN architecture, in which FCN aims at recovering the depth from an RGB image, and CNN retains the separability of individual subjects. The estimated depth information is then used as a complementary modality to RGB for face recognition tasks. Experiments on two public datasets and a dataset we collect show that the proposed face recognition method using RGB and estimated depth information can achieve better accuracy than using RGB modality alone.\",\"PeriodicalId\":130957,\"journal\":{\"name\":\"2018 International Conference on Biometrics (ICB)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB2018.2018.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

随着人脸识别从受约束场景向无约束场景的发展,人脸识别面临着姿态大、光照差、局部遮挡等新的挑战。在3 d或多模RGB-D传感器有助于人脸识别系统实现鲁棒性对这些挑战,新的传感器的要求限制了他们的应用场景。在本文中,我们提出了一种判别性人脸深度估计方法来提高无约束场景下的二维人脸识别精度。我们的判别深度估计方法使用了FCN和CNN的级联架构,其中FCN旨在从RGB图像中恢复深度,而CNN保留了个体主体的可分离性。然后将估计的深度信息作为RGB的补充模态用于人脸识别任务。在两个公共数据集和我们收集的数据集上的实验表明,使用RGB和估计深度信息的人脸识别方法比单独使用RGB模式可以获得更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving 2D Face Recognition via Discriminative Face Depth Estimation
As face recognition progresses from constrained scenarios to unconstrained scenarios, new challenges such as large pose, bad illumination, and partial occlusion, are encountered. While 3D or multi-modality RGB-D sensors are helpful for face recognition systems to achieve robustness against these challenges, the requirement of new sensors limits their application scenarios. In our paper, we propose a discriminative face depth estimation approach to improve 2D face recognition accuracies under unconstrained scenarios. Our discriminative depth estimation method uses a cascaded FCN and CNN architecture, in which FCN aims at recovering the depth from an RGB image, and CNN retains the separability of individual subjects. The estimated depth information is then used as a complementary modality to RGB for face recognition tasks. Experiments on two public datasets and a dataset we collect show that the proposed face recognition method using RGB and estimated depth information can achieve better accuracy than using RGB modality alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信