多机器人系统中的协作、分布式定位:最小熵方法

Vincenzo Caglioti, Augusto Citterio, Andrea Fossati
{"title":"多机器人系统中的协作、分布式定位:最小熵方法","authors":"Vincenzo Caglioti, Augusto Citterio, Andrea Fossati","doi":"10.1109/DIS.2006.20","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of localization in a multi-robot system. We present a new approach focused on distribution, scalability, and minimum-uncertainty perception. An extended Kalman filter (EKF) is used to update an estimate of the robot poses in correspondence to each sensor measurement. An entropic criterion is used, in order to select optimal measurements that reduce the global uncertainty relative to the estimate of the robot poses. It is shown that, in addition to EKF, also the selection of the optimal measurement can be distributed among the robots, in a scalable fashion. The proposed approach has been validated by simulations and preliminary experimental results","PeriodicalId":318812,"journal":{"name":"IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS'06)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Cooperative, distributed localization in multi-robot systems: a minimum-entropy approach\",\"authors\":\"Vincenzo Caglioti, Augusto Citterio, Andrea Fossati\",\"doi\":\"10.1109/DIS.2006.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of localization in a multi-robot system. We present a new approach focused on distribution, scalability, and minimum-uncertainty perception. An extended Kalman filter (EKF) is used to update an estimate of the robot poses in correspondence to each sensor measurement. An entropic criterion is used, in order to select optimal measurements that reduce the global uncertainty relative to the estimate of the robot poses. It is shown that, in addition to EKF, also the selection of the optimal measurement can be distributed among the robots, in a scalable fashion. The proposed approach has been validated by simulations and preliminary experimental results\",\"PeriodicalId\":318812,\"journal\":{\"name\":\"IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS'06)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DIS.2006.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIS.2006.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本文研究了多机器人系统中的定位问题。我们提出了一种专注于分布、可扩展性和最小不确定性感知的新方法。扩展卡尔曼滤波(EKF)用于更新机器人姿态的估计,以对应于每个传感器的测量。为了选择最优测量值,使用熵准则来减少相对于机器人姿态估计的全局不确定性。结果表明,除了EKF之外,最优测量的选择也可以以可扩展的方式分布在机器人之间。仿真和初步实验结果验证了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative, distributed localization in multi-robot systems: a minimum-entropy approach
In this paper, we consider the problem of localization in a multi-robot system. We present a new approach focused on distribution, scalability, and minimum-uncertainty perception. An extended Kalman filter (EKF) is used to update an estimate of the robot poses in correspondence to each sensor measurement. An entropic criterion is used, in order to select optimal measurements that reduce the global uncertainty relative to the estimate of the robot poses. It is shown that, in addition to EKF, also the selection of the optimal measurement can be distributed among the robots, in a scalable fashion. The proposed approach has been validated by simulations and preliminary experimental results
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信