数据驱动科学:SIGKDD小组

K. Morik, H. Durrant-Whyte, Gary Hill, Dietmar Müller, T. Berger-Wolf
{"title":"数据驱动科学:SIGKDD小组","authors":"K. Morik, H. Durrant-Whyte, Gary Hill, Dietmar Müller, T. Berger-Wolf","doi":"10.1145/2783258.2788703","DOIUrl":null,"url":null,"abstract":"The panel session 'Data Driven Science' discusses application and use of knowledge discovery, machine learning and data analytics in science disciplines; in natural, physical, medical and social science; from physics to geology, and from neuroscience to population health. Knowledge discovery methods are finding broad application in all areas of scientific endeavor, to explore experimental data, to discover new models, to propose new scientific theories and ideas. In addition, the availability of ever larger scientific data sets is driving a new data-driven paradigm for modeling of complex phenomena in physical, natural and social sciences. The purpose of this panel is to bring together users of knowledge discovery, machine learning and data analytics methods across the science disciplines, to understand what tools and methods are proving effective in areas such as data exploration and modeling, to uncover common problems that can be addressed in the KDD community, and to explore the emerging data-driven paradigm in science.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data Driven Science: SIGKDD Panel\",\"authors\":\"K. Morik, H. Durrant-Whyte, Gary Hill, Dietmar Müller, T. Berger-Wolf\",\"doi\":\"10.1145/2783258.2788703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The panel session 'Data Driven Science' discusses application and use of knowledge discovery, machine learning and data analytics in science disciplines; in natural, physical, medical and social science; from physics to geology, and from neuroscience to population health. Knowledge discovery methods are finding broad application in all areas of scientific endeavor, to explore experimental data, to discover new models, to propose new scientific theories and ideas. In addition, the availability of ever larger scientific data sets is driving a new data-driven paradigm for modeling of complex phenomena in physical, natural and social sciences. The purpose of this panel is to bring together users of knowledge discovery, machine learning and data analytics methods across the science disciplines, to understand what tools and methods are proving effective in areas such as data exploration and modeling, to uncover common problems that can be addressed in the KDD community, and to explore the emerging data-driven paradigm in science.\",\"PeriodicalId\":243428,\"journal\":{\"name\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2783258.2788703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2788703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

“数据驱动科学”小组讨论了知识发现、机器学习和数据分析在科学学科中的应用和使用;在自然、物理、医学和社会科学方面;从物理学到地质学,从神经科学到人口健康。知识发现方法在科学研究的各个领域得到了广泛的应用,用于探索实验数据,发现新的模型,提出新的科学理论和思想。此外,越来越大的科学数据集的可用性正在推动一种新的数据驱动范式,用于对物理、自然和社会科学中的复杂现象进行建模。该小组的目的是将知识发现、机器学习和数据分析方法的用户聚集在一起,了解哪些工具和方法在数据探索和建模等领域被证明是有效的,发现可以在KDD社区中解决的常见问题,并探索科学中新兴的数据驱动范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Driven Science: SIGKDD Panel
The panel session 'Data Driven Science' discusses application and use of knowledge discovery, machine learning and data analytics in science disciplines; in natural, physical, medical and social science; from physics to geology, and from neuroscience to population health. Knowledge discovery methods are finding broad application in all areas of scientific endeavor, to explore experimental data, to discover new models, to propose new scientific theories and ideas. In addition, the availability of ever larger scientific data sets is driving a new data-driven paradigm for modeling of complex phenomena in physical, natural and social sciences. The purpose of this panel is to bring together users of knowledge discovery, machine learning and data analytics methods across the science disciplines, to understand what tools and methods are proving effective in areas such as data exploration and modeling, to uncover common problems that can be addressed in the KDD community, and to explore the emerging data-driven paradigm in science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信