{"title":"通过生成年龄归一化促进跨年龄人脸验证","authors":"G. Antipov, M. Baccouche, J. Dugelay","doi":"10.1109/BTAS.2017.8272698","DOIUrl":null,"url":null,"abstract":"Despite the tremendous progress in face verification performance as a result of Deep Learning, the sensitivity to human age variations remains an Achilles' heel of the majority of the contemporary face verification software. A promising solution to this problem consists in synthetic aging/rejuvenation of the input face images to some predefined age categories prior to face verification. We recently proposed [3] Age-cGAN aging/rejuvenation method based on generative adversarial neural networks allowing to synthesize more plausible and realistic faces than alternative non-generative methods. However, in this work, we show that Age-cGAN cannot be directly used for improving face verification due to its slightly imperfect preservation of the original identities in aged/rejuvenated faces. We therefore propose Local Manifold Adaptation (LMA) approach which resolves the stated issue of Age-cGAN resulting in the novel Age-cGAN+LMA aging/rejuvenation method. Based on Age-cGAN+LMA, we design an age normalization algorithm which boosts the accuracy of an off-the-shelf face verification software in the cross-age evaluation scenario.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Boosting cross-age face verification via generative age normalization\",\"authors\":\"G. Antipov, M. Baccouche, J. Dugelay\",\"doi\":\"10.1109/BTAS.2017.8272698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the tremendous progress in face verification performance as a result of Deep Learning, the sensitivity to human age variations remains an Achilles' heel of the majority of the contemporary face verification software. A promising solution to this problem consists in synthetic aging/rejuvenation of the input face images to some predefined age categories prior to face verification. We recently proposed [3] Age-cGAN aging/rejuvenation method based on generative adversarial neural networks allowing to synthesize more plausible and realistic faces than alternative non-generative methods. However, in this work, we show that Age-cGAN cannot be directly used for improving face verification due to its slightly imperfect preservation of the original identities in aged/rejuvenated faces. We therefore propose Local Manifold Adaptation (LMA) approach which resolves the stated issue of Age-cGAN resulting in the novel Age-cGAN+LMA aging/rejuvenation method. Based on Age-cGAN+LMA, we design an age normalization algorithm which boosts the accuracy of an off-the-shelf face verification software in the cross-age evaluation scenario.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boosting cross-age face verification via generative age normalization
Despite the tremendous progress in face verification performance as a result of Deep Learning, the sensitivity to human age variations remains an Achilles' heel of the majority of the contemporary face verification software. A promising solution to this problem consists in synthetic aging/rejuvenation of the input face images to some predefined age categories prior to face verification. We recently proposed [3] Age-cGAN aging/rejuvenation method based on generative adversarial neural networks allowing to synthesize more plausible and realistic faces than alternative non-generative methods. However, in this work, we show that Age-cGAN cannot be directly used for improving face verification due to its slightly imperfect preservation of the original identities in aged/rejuvenated faces. We therefore propose Local Manifold Adaptation (LMA) approach which resolves the stated issue of Age-cGAN resulting in the novel Age-cGAN+LMA aging/rejuvenation method. Based on Age-cGAN+LMA, we design an age normalization algorithm which boosts the accuracy of an off-the-shelf face verification software in the cross-age evaluation scenario.