展开三元神经网络

Stephen Tridgell, M. Kumm, M. Hardieck, D. Boland, Duncan J. M. Moss, P. Zipf, Philip H. W. Leong
{"title":"展开三元神经网络","authors":"Stephen Tridgell, M. Kumm, M. Hardieck, D. Boland, Duncan J. M. Moss, P. Zipf, Philip H. W. Leong","doi":"10.1145/3359983","DOIUrl":null,"url":null,"abstract":"The computational complexity of neural networks for large-scale or real-time applications necessitates hardware acceleration. Most approaches assume that the network architecture and parameters are unknown at design time, permitting usage in a large number of applications. This article demonstrates, for the case where the neural network architecture and ternary weight values are known a priori, that extremely high throughput implementations of neural network inference can be made by customising the datapath and routing to remove unnecessary computations and data movement. This approach is ideally suited to FPGA implementations as a specialized implementation of a trained network improves efficiency while still retaining generality with the reconfigurability of an FPGA. A VGG-style network with ternary weights and fixed point activations is implemented for the CIFAR10 dataset on Amazon’s AWS F1 instance. This article demonstrates how to remove 90% of the operations in convolutional layers by exploiting sparsity and compile-time optimizations. The implementation in hardware achieves 90.9 ± 0.1% accuracy and 122k frames per second, with a latency of only 29µs, which is the fastest CNN inference implementation reported so far on an FPGA.","PeriodicalId":162787,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","volume":"411 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Unrolling Ternary Neural Networks\",\"authors\":\"Stephen Tridgell, M. Kumm, M. Hardieck, D. Boland, Duncan J. M. Moss, P. Zipf, Philip H. W. Leong\",\"doi\":\"10.1145/3359983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computational complexity of neural networks for large-scale or real-time applications necessitates hardware acceleration. Most approaches assume that the network architecture and parameters are unknown at design time, permitting usage in a large number of applications. This article demonstrates, for the case where the neural network architecture and ternary weight values are known a priori, that extremely high throughput implementations of neural network inference can be made by customising the datapath and routing to remove unnecessary computations and data movement. This approach is ideally suited to FPGA implementations as a specialized implementation of a trained network improves efficiency while still retaining generality with the reconfigurability of an FPGA. A VGG-style network with ternary weights and fixed point activations is implemented for the CIFAR10 dataset on Amazon’s AWS F1 instance. This article demonstrates how to remove 90% of the operations in convolutional layers by exploiting sparsity and compile-time optimizations. The implementation in hardware achieves 90.9 ± 0.1% accuracy and 122k frames per second, with a latency of only 29µs, which is the fastest CNN inference implementation reported so far on an FPGA.\",\"PeriodicalId\":162787,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems (TRETS)\",\"volume\":\"411 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems (TRETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3359983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3359983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

大规模或实时应用的神经网络的计算复杂性需要硬件加速。大多数方法都假定网络架构和参数在设计时是未知的,从而允许在大量应用程序中使用。对于先验已知神经网络架构和三元权重值的情况,本文演示了可以通过定制数据路径和路由来消除不必要的计算和数据移动来实现神经网络推理的极高吞吐量实现。这种方法非常适合FPGA实现,因为经过训练的网络的专门实现提高了效率,同时仍然保留了FPGA的可重构性的通用性。在Amazon的AWS F1实例上为CIFAR10数据集实现了一个具有三元权重和定点激活的vg风格的网络。本文演示了如何通过利用稀疏性和编译时优化来消除卷积层中90%的操作。在硬件上的实现实现了90.9±0.1%的精度和每秒122k帧,延迟仅为29µs,这是迄今为止在FPGA上报道的最快的CNN推理实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unrolling Ternary Neural Networks
The computational complexity of neural networks for large-scale or real-time applications necessitates hardware acceleration. Most approaches assume that the network architecture and parameters are unknown at design time, permitting usage in a large number of applications. This article demonstrates, for the case where the neural network architecture and ternary weight values are known a priori, that extremely high throughput implementations of neural network inference can be made by customising the datapath and routing to remove unnecessary computations and data movement. This approach is ideally suited to FPGA implementations as a specialized implementation of a trained network improves efficiency while still retaining generality with the reconfigurability of an FPGA. A VGG-style network with ternary weights and fixed point activations is implemented for the CIFAR10 dataset on Amazon’s AWS F1 instance. This article demonstrates how to remove 90% of the operations in convolutional layers by exploiting sparsity and compile-time optimizations. The implementation in hardware achieves 90.9 ± 0.1% accuracy and 122k frames per second, with a latency of only 29µs, which is the fastest CNN inference implementation reported so far on an FPGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信