通过基于理论贝叶斯分类风险估计的帕森窗口最小分类误差

E. McDermott, S. Katagiri
{"title":"通过基于理论贝叶斯分类风险估计的帕森窗口最小分类误差","authors":"E. McDermott, S. Katagiri","doi":"10.1109/NNSP.2002.1030053","DOIUrl":null,"url":null,"abstract":"This article shows that the minimum classification error (MCE) criterion function commonly used for discriminative design of pattern recognition systems is equivalent to a Parzen window based estimate of the theoretical Bayes classification risk. In this analysis, each training token is mapped to the center of a Parzen kernel in the domain of a suitably defined \"output level\" random variable. The kernels are summed to produce a density estimate; this estimate in turn can easily be integrated over the domain of incorrect classifications, yielding the risk estimate. The expression of risk for each kernel can be seen to correspond directly to the usual MCE loss function. The resulting risk estimate can be minimized by suitable adaptation of the recognition system parameters that determine the mapping from training token to kernel center. This analysis provides a novel link between the MCE empirical cost measured on a finite training set and the theoretical Bayes classification risk.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"411 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Minimum classification error via a Parzen window based estimate of the theoretical Bayes classification risk\",\"authors\":\"E. McDermott, S. Katagiri\",\"doi\":\"10.1109/NNSP.2002.1030053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article shows that the minimum classification error (MCE) criterion function commonly used for discriminative design of pattern recognition systems is equivalent to a Parzen window based estimate of the theoretical Bayes classification risk. In this analysis, each training token is mapped to the center of a Parzen kernel in the domain of a suitably defined \\\"output level\\\" random variable. The kernels are summed to produce a density estimate; this estimate in turn can easily be integrated over the domain of incorrect classifications, yielding the risk estimate. The expression of risk for each kernel can be seen to correspond directly to the usual MCE loss function. The resulting risk estimate can be minimized by suitable adaptation of the recognition system parameters that determine the mapping from training token to kernel center. This analysis provides a novel link between the MCE empirical cost measured on a finite training set and the theoretical Bayes classification risk.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"411 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文表明,通常用于模式识别系统判别设计的最小分类误差(MCE)准则函数等价于基于Parzen窗口的理论贝叶斯分类风险估计。在这个分析中,每个训练标记被映射到Parzen核的中心,在一个适当定义的“输出水平”随机变量的域中。对核求和得到密度估计;这种评估反过来很容易被集成到不正确分类的领域中,从而产生风险评估。每个核的风险表达式可以看到直接对应于通常的MCE损失函数。通过适当地调整识别系统参数(这些参数决定了从训练标记到核中心的映射),可以最小化所得到的风险估计。该分析提供了在有限训练集上测量的MCE经验成本与理论贝叶斯分类风险之间的新联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum classification error via a Parzen window based estimate of the theoretical Bayes classification risk
This article shows that the minimum classification error (MCE) criterion function commonly used for discriminative design of pattern recognition systems is equivalent to a Parzen window based estimate of the theoretical Bayes classification risk. In this analysis, each training token is mapped to the center of a Parzen kernel in the domain of a suitably defined "output level" random variable. The kernels are summed to produce a density estimate; this estimate in turn can easily be integrated over the domain of incorrect classifications, yielding the risk estimate. The expression of risk for each kernel can be seen to correspond directly to the usual MCE loss function. The resulting risk estimate can be minimized by suitable adaptation of the recognition system parameters that determine the mapping from training token to kernel center. This analysis provides a novel link between the MCE empirical cost measured on a finite training set and the theoretical Bayes classification risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信