改进机密数据汇总

Kazuyoshi Furukawa, M. Takenaka, T. Izu
{"title":"改进机密数据汇总","authors":"Kazuyoshi Furukawa, M. Takenaka, T. Izu","doi":"10.1109/IMIS.2013.148","DOIUrl":null,"url":null,"abstract":"With a rapid spread of the cloud computing, confidential data totalization technologies are becoming more important. In 2011, Ushida et al. proposed a confidential data totalization technique based on the value distortion, in which each data in a formulaic corss-tabulation table is randomized by a random data shared in a pre-provided random data table, and the cloud server is able to totalize the data by summing randomized data since the sum of the randomized table data is known to the server. So the cloud server does not require any specific functions for totalizing randomized data and no information is leaked to the cloud server. However, there are tow problems. The first problem is data leakage from randomized table data if the same random table is used twice or more. The second problem is the difficulty of appending new rows or columns to the random data table without reproviding them to the users. This paper introduces solutions for these problems: a table updating method for the random table and and a table extending method for the random table without any re-provisions. With the proposed solutions, the cost of the the secure table data analysis method for the update and the extension can be reduced extremely.","PeriodicalId":425979,"journal":{"name":"2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Confidential Data Totalization\",\"authors\":\"Kazuyoshi Furukawa, M. Takenaka, T. Izu\",\"doi\":\"10.1109/IMIS.2013.148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a rapid spread of the cloud computing, confidential data totalization technologies are becoming more important. In 2011, Ushida et al. proposed a confidential data totalization technique based on the value distortion, in which each data in a formulaic corss-tabulation table is randomized by a random data shared in a pre-provided random data table, and the cloud server is able to totalize the data by summing randomized data since the sum of the randomized table data is known to the server. So the cloud server does not require any specific functions for totalizing randomized data and no information is leaked to the cloud server. However, there are tow problems. The first problem is data leakage from randomized table data if the same random table is used twice or more. The second problem is the difficulty of appending new rows or columns to the random data table without reproviding them to the users. This paper introduces solutions for these problems: a table updating method for the random table and and a table extending method for the random table without any re-provisions. With the proposed solutions, the cost of the the secure table data analysis method for the update and the extension can be reduced extremely.\",\"PeriodicalId\":425979,\"journal\":{\"name\":\"2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMIS.2013.148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMIS.2013.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着云计算的迅速普及,机密数据汇总技术变得越来越重要。2011年,Ushida等人提出了一种基于值失真的机密数据汇总技术,该技术将公式化交叉制表中的每个数据由预先提供的随机数据表中共享的随机数据进行随机化,由于服务器知道随机表数据的总和,因此云服务器可以通过对随机数据进行求和来对数据进行汇总。因此,云服务器不需要任何特定的功能来汇总随机数据,也不会向云服务器泄露任何信息。然而,有两个问题。第一个问题是,如果同一个随机表被使用两次或更多次,则随机表数据的数据泄漏。第二个问题是在不向用户重新提供新行或列的情况下向随机数据表追加新行或列的困难。本文介绍了解决这些问题的方法:随机表的表更新方法和随机表的表扩展方法。该解决方案极大地降低了安全表数据分析方法的更新和扩展成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Confidential Data Totalization
With a rapid spread of the cloud computing, confidential data totalization technologies are becoming more important. In 2011, Ushida et al. proposed a confidential data totalization technique based on the value distortion, in which each data in a formulaic corss-tabulation table is randomized by a random data shared in a pre-provided random data table, and the cloud server is able to totalize the data by summing randomized data since the sum of the randomized table data is known to the server. So the cloud server does not require any specific functions for totalizing randomized data and no information is leaked to the cloud server. However, there are tow problems. The first problem is data leakage from randomized table data if the same random table is used twice or more. The second problem is the difficulty of appending new rows or columns to the random data table without reproviding them to the users. This paper introduces solutions for these problems: a table updating method for the random table and and a table extending method for the random table without any re-provisions. With the proposed solutions, the cost of the the secure table data analysis method for the update and the extension can be reduced extremely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信