观察离体灌注大鼠心脏的炎症活动

Long‐Sheng Lu, Yen‐Bin Liu, Chau-Chung Wu, Chia-Wei Sun
{"title":"观察离体灌注大鼠心脏的炎症活动","authors":"Long‐Sheng Lu, Yen‐Bin Liu, Chau-Chung Wu, Chia-Wei Sun","doi":"10.1109/APBP.2004.1412325","DOIUrl":null,"url":null,"abstract":"Inflammation is a defense mechanism against various noxious stimuli. The recruitment of host leukocytes to sites of injury results in increased regional microvascular leakage and reactive oxygen species (ROS) generation. Excessive inflammatory activity not only eliminates offending stimuli but also result in tissue damage, as evidenced in reperfusion injury of the heart. To investigate spatial-temporal evolution of acute inflammation after myocardial reperfusion injury, we monitored microvascular leakage and reactive oxygen species generation with optical mapping technique. Reperfusion injury was performed on isolated blood-perfused rat heart, and it was labeled with dihydroethidium and large molecular weight tetramethylrhodamine conjugated dextran. Tissue was illuminated with a 532 nm laser, and epifluorescence at 580 and 650 nm was collected through 2 separate band pass filters. Our results indicate that 1. Optical mapping of myocardial inflammation is feasible; and 2. Reperfusion injury elicits substantial microvascular leakage and ROS production.","PeriodicalId":346624,"journal":{"name":"The Second Asian and Pacific Rim Symposium on Biophotonics, 2004. APBP 2004.","volume":"354 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing inflammatory activity in isolated perfused rat hearts\",\"authors\":\"Long‐Sheng Lu, Yen‐Bin Liu, Chau-Chung Wu, Chia-Wei Sun\",\"doi\":\"10.1109/APBP.2004.1412325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inflammation is a defense mechanism against various noxious stimuli. The recruitment of host leukocytes to sites of injury results in increased regional microvascular leakage and reactive oxygen species (ROS) generation. Excessive inflammatory activity not only eliminates offending stimuli but also result in tissue damage, as evidenced in reperfusion injury of the heart. To investigate spatial-temporal evolution of acute inflammation after myocardial reperfusion injury, we monitored microvascular leakage and reactive oxygen species generation with optical mapping technique. Reperfusion injury was performed on isolated blood-perfused rat heart, and it was labeled with dihydroethidium and large molecular weight tetramethylrhodamine conjugated dextran. Tissue was illuminated with a 532 nm laser, and epifluorescence at 580 and 650 nm was collected through 2 separate band pass filters. Our results indicate that 1. Optical mapping of myocardial inflammation is feasible; and 2. Reperfusion injury elicits substantial microvascular leakage and ROS production.\",\"PeriodicalId\":346624,\"journal\":{\"name\":\"The Second Asian and Pacific Rim Symposium on Biophotonics, 2004. APBP 2004.\",\"volume\":\"354 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Second Asian and Pacific Rim Symposium on Biophotonics, 2004. APBP 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APBP.2004.1412325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Second Asian and Pacific Rim Symposium on Biophotonics, 2004. APBP 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APBP.2004.1412325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

炎症是一种抵抗各种有害刺激的防御机制。宿主白细胞向损伤部位的募集导致局部微血管渗漏和活性氧(ROS)的产生增加。过度的炎症活动不仅会消除不良刺激,还会导致组织损伤,如心脏再灌注损伤所证明的那样。为了研究心肌再灌注损伤后急性炎症的时空演变,我们利用光学成像技术监测了微血管渗漏和活性氧的产生。对离体血灌注大鼠心脏进行再灌注损伤,用二氢乙啶和大分子四甲基罗丹明共轭右旋糖酐标记。用532 nm激光照射组织,通过两个单独的带通滤光片收集580 nm和650 nm的荧光。我们的结果表明:1。心肌炎症的光学成像是可行的;和2。再灌注损伤引起大量微血管渗漏和ROS的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing inflammatory activity in isolated perfused rat hearts
Inflammation is a defense mechanism against various noxious stimuli. The recruitment of host leukocytes to sites of injury results in increased regional microvascular leakage and reactive oxygen species (ROS) generation. Excessive inflammatory activity not only eliminates offending stimuli but also result in tissue damage, as evidenced in reperfusion injury of the heart. To investigate spatial-temporal evolution of acute inflammation after myocardial reperfusion injury, we monitored microvascular leakage and reactive oxygen species generation with optical mapping technique. Reperfusion injury was performed on isolated blood-perfused rat heart, and it was labeled with dihydroethidium and large molecular weight tetramethylrhodamine conjugated dextran. Tissue was illuminated with a 532 nm laser, and epifluorescence at 580 and 650 nm was collected through 2 separate band pass filters. Our results indicate that 1. Optical mapping of myocardial inflammation is feasible; and 2. Reperfusion injury elicits substantial microvascular leakage and ROS production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信