使用模型模糊测试配置资源管理器:.NET线程池的案例研究

J. Hellerstein
{"title":"使用模型模糊测试配置资源管理器:.NET线程池的案例研究","authors":"J. Hellerstein","doi":"10.1109/INM.2009.5188780","DOIUrl":null,"url":null,"abstract":"Resource managers (RMs) often expose configuration parameters that have a significant impact on the performance of the systems they manage. Configuring RMs is challenging because it requires accurate estimates of performance for a large number of configuration settings and many workloads, which scales poorly if configuration assessment requires running performance benchmarks. We propose an approach to evaluating RM configurations called model fuzzing that combines measurement and simple models to provide accurate and scalable configuration evaluation. Based on model fuzzing, we develop a methodology for configuring RMs that considers multiple evaluation criteria (e.g., high throughput, low number of threads). Applying this methodology to the .NET thread pool, we find a configuration that increases throughput by 240% compared with the throughput of a poorly chosen configuration. Using model fuzzing reduces the computational requirements to configure the .NET thread pool from machine-years to machine-hours.","PeriodicalId":332206,"journal":{"name":"2009 IFIP/IEEE International Symposium on Integrated Network Management","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Configuring resource managers using model fuzzing: A case study of the .NET thread pool\",\"authors\":\"J. Hellerstein\",\"doi\":\"10.1109/INM.2009.5188780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource managers (RMs) often expose configuration parameters that have a significant impact on the performance of the systems they manage. Configuring RMs is challenging because it requires accurate estimates of performance for a large number of configuration settings and many workloads, which scales poorly if configuration assessment requires running performance benchmarks. We propose an approach to evaluating RM configurations called model fuzzing that combines measurement and simple models to provide accurate and scalable configuration evaluation. Based on model fuzzing, we develop a methodology for configuring RMs that considers multiple evaluation criteria (e.g., high throughput, low number of threads). Applying this methodology to the .NET thread pool, we find a configuration that increases throughput by 240% compared with the throughput of a poorly chosen configuration. Using model fuzzing reduces the computational requirements to configure the .NET thread pool from machine-years to machine-hours.\",\"PeriodicalId\":332206,\"journal\":{\"name\":\"2009 IFIP/IEEE International Symposium on Integrated Network Management\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IFIP/IEEE International Symposium on Integrated Network Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INM.2009.5188780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IFIP/IEEE International Symposium on Integrated Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2009.5188780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

资源管理器(rm)经常公开对其管理的系统的性能有重大影响的配置参数。配置rm是具有挑战性的,因为它需要对大量配置设置和许多工作负载进行准确的性能估计,如果配置评估需要运行性能基准测试,则可伸缩性很差。我们提出了一种评估RM配置的方法,称为模型模糊,它结合了测量和简单模型,以提供准确和可扩展的配置评估。基于模型模糊,我们开发了一种配置rm的方法,该方法考虑了多个评估标准(例如,高吞吐量,低线程数)。将这种方法应用到。net线程池中,我们发现与选择不佳的配置相比,这种配置的吞吐量提高了240%。使用模型模糊将配置。net线程池的计算需求从机器年减少到机器小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Configuring resource managers using model fuzzing: A case study of the .NET thread pool
Resource managers (RMs) often expose configuration parameters that have a significant impact on the performance of the systems they manage. Configuring RMs is challenging because it requires accurate estimates of performance for a large number of configuration settings and many workloads, which scales poorly if configuration assessment requires running performance benchmarks. We propose an approach to evaluating RM configurations called model fuzzing that combines measurement and simple models to provide accurate and scalable configuration evaluation. Based on model fuzzing, we develop a methodology for configuring RMs that considers multiple evaluation criteria (e.g., high throughput, low number of threads). Applying this methodology to the .NET thread pool, we find a configuration that increases throughput by 240% compared with the throughput of a poorly chosen configuration. Using model fuzzing reduces the computational requirements to configure the .NET thread pool from machine-years to machine-hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信