索引子空间集群与进程内冗余去除

I. Assent, Ralph Krieger, Emmanuel Müller, T. Seidl
{"title":"索引子空间集群与进程内冗余去除","authors":"I. Assent, Ralph Krieger, Emmanuel Müller, T. Seidl","doi":"10.1109/ICDM.2008.46","DOIUrl":null,"url":null,"abstract":"Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of projections is exponential in the number of dimensions, efficiency is crucial. Moreover, the resulting subspace clusters are often highly redundant, i.e. many clusters are detected multiply in several projections. We propose a novel index for efficient subspace clustering in a novel depth-first processing with in-process-removal of redundant clusters for better pruning. Thorough experiments on real and synthetic data show that INSCY yields substantial efficiency and quality improvements.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy\",\"authors\":\"I. Assent, Ralph Krieger, Emmanuel Müller, T. Seidl\",\"doi\":\"10.1109/ICDM.2008.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of projections is exponential in the number of dimensions, efficiency is crucial. Moreover, the resulting subspace clusters are often highly redundant, i.e. many clusters are detected multiply in several projections. We propose a novel index for efficient subspace clustering in a novel depth-first processing with in-process-removal of redundant clusters for better pruning. Thorough experiments on real and synthetic data show that INSCY yields substantial efficiency and quality improvements.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

子空间聚类的目的是在高维空间的任意子空间投影中检测聚类。由于投影的数量在维度数量上呈指数级增长,因此效率至关重要。此外,得到的子空间聚类通常是高度冗余的,即在几个投影中检测到许多聚类。我们提出了一种新的索引,用于在一种新的深度优先处理中高效的子空间聚类,该处理在处理过程中去除冗余簇以获得更好的修剪。在真实数据和合成数据上进行的深入实验表明,INSCY的效率和质量都得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy
Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of projections is exponential in the number of dimensions, efficiency is crucial. Moreover, the resulting subspace clusters are often highly redundant, i.e. many clusters are detected multiply in several projections. We propose a novel index for efficient subspace clustering in a novel depth-first processing with in-process-removal of redundant clusters for better pruning. Thorough experiments on real and synthetic data show that INSCY yields substantial efficiency and quality improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信