Ruben Verhack, T. Sikora, Lieven Lange, Rolf Jongebloed, G. Wallendael, P. Lambert
{"title":"操纵混合专家光场编码,深度估计和处理","authors":"Ruben Verhack, T. Sikora, Lieven Lange, Rolf Jongebloed, G. Wallendael, P. Lambert","doi":"10.1109/ICME.2017.8019442","DOIUrl":null,"url":null,"abstract":"The proposed framework, called Steered Mixture-of-Experts (SMoE), enables a multitude of processing tasks on light fields using a single unified Bayesian model. The underlying assumption is that light field rays are instantiations of a non-linear or non-stationary random process that can be modeled by piecewise stationary processes in the spatial domain. As such, it is modeled as a space-continuous Gaussian Mixture Model. Consequently, the model takes into account different regions of the scene, their edges, and their development along the spatial and disparity dimensions. Applications presented include light field coding, depth estimation, edge detection, segmentation, and view interpolation. The representation is compact, which allows for very efficient compression yielding state-of-the-art coding results for low bit-rates. Furthermore, due to the statistical representation, a vast amount of information can be queried from the model even without having to analyze the pixel values. This allows for “blind” light field processing and classification.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Steered mixture-of-experts for light field coding, depth estimation, and processing\",\"authors\":\"Ruben Verhack, T. Sikora, Lieven Lange, Rolf Jongebloed, G. Wallendael, P. Lambert\",\"doi\":\"10.1109/ICME.2017.8019442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed framework, called Steered Mixture-of-Experts (SMoE), enables a multitude of processing tasks on light fields using a single unified Bayesian model. The underlying assumption is that light field rays are instantiations of a non-linear or non-stationary random process that can be modeled by piecewise stationary processes in the spatial domain. As such, it is modeled as a space-continuous Gaussian Mixture Model. Consequently, the model takes into account different regions of the scene, their edges, and their development along the spatial and disparity dimensions. Applications presented include light field coding, depth estimation, edge detection, segmentation, and view interpolation. The representation is compact, which allows for very efficient compression yielding state-of-the-art coding results for low bit-rates. Furthermore, due to the statistical representation, a vast amount of information can be queried from the model even without having to analyze the pixel values. This allows for “blind” light field processing and classification.\",\"PeriodicalId\":330977,\"journal\":{\"name\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2017.8019442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Steered mixture-of-experts for light field coding, depth estimation, and processing
The proposed framework, called Steered Mixture-of-Experts (SMoE), enables a multitude of processing tasks on light fields using a single unified Bayesian model. The underlying assumption is that light field rays are instantiations of a non-linear or non-stationary random process that can be modeled by piecewise stationary processes in the spatial domain. As such, it is modeled as a space-continuous Gaussian Mixture Model. Consequently, the model takes into account different regions of the scene, their edges, and their development along the spatial and disparity dimensions. Applications presented include light field coding, depth estimation, edge detection, segmentation, and view interpolation. The representation is compact, which allows for very efficient compression yielding state-of-the-art coding results for low bit-rates. Furthermore, due to the statistical representation, a vast amount of information can be queried from the model even without having to analyze the pixel values. This allows for “blind” light field processing and classification.