基于loihi2的高效神经形态信号处理

G. Orchard, E. P. Frady, D. B. Rubin, S. Sanborn, S. Shrestha, F. Sommer, Mike Davies
{"title":"基于loihi2的高效神经形态信号处理","authors":"G. Orchard, E. P. Frady, D. B. Rubin, S. Sanborn, S. Shrestha, F. Sommer, Mike Davies","doi":"10.1109/SiPS52927.2021.00053","DOIUrl":null,"url":null,"abstract":"The biologically inspired spiking neurons used in neuromorphic computing are nonlinear filters with dynamic state variables—very different from the stateless neuron models used in deep learning. The next version of Intel's neuromorphic research processor, Loihi 2, supports a wide range of stateful spiking neuron models with fully programmable dynamics. Here we showcase advanced spiking neuron models that can be used to efficiently process streaming data in simulation experiments on emulated Loihi 2 hardware. In one example, Resonate-and-Fire (RF) neurons are used to compute the Short Time Fourier Transform (STFT) with similar computational complexity but 47x less output bandwidth than the conventional STFT. In another example, we describe an algorithm for optical flow estimation using spatiotemporal RF neurons that requires over 90x fewer operations than a conventional DNN-based solution. We also demonstrate promising preliminary results using backpropagation to train RF neurons for audio classification tasks. Finally, we show that a cascade of Hopf resonators—a variant of the RF neuron—replicates novel properties of the cochlea and motivates an efficient spike-based spectrogram encoder.","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Efficient Neuromorphic Signal Processing with Loihi 2\",\"authors\":\"G. Orchard, E. P. Frady, D. B. Rubin, S. Sanborn, S. Shrestha, F. Sommer, Mike Davies\",\"doi\":\"10.1109/SiPS52927.2021.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The biologically inspired spiking neurons used in neuromorphic computing are nonlinear filters with dynamic state variables—very different from the stateless neuron models used in deep learning. The next version of Intel's neuromorphic research processor, Loihi 2, supports a wide range of stateful spiking neuron models with fully programmable dynamics. Here we showcase advanced spiking neuron models that can be used to efficiently process streaming data in simulation experiments on emulated Loihi 2 hardware. In one example, Resonate-and-Fire (RF) neurons are used to compute the Short Time Fourier Transform (STFT) with similar computational complexity but 47x less output bandwidth than the conventional STFT. In another example, we describe an algorithm for optical flow estimation using spatiotemporal RF neurons that requires over 90x fewer operations than a conventional DNN-based solution. We also demonstrate promising preliminary results using backpropagation to train RF neurons for audio classification tasks. Finally, we show that a cascade of Hopf resonators—a variant of the RF neuron—replicates novel properties of the cochlea and motivates an efficient spike-based spectrogram encoder.\",\"PeriodicalId\":103894,\"journal\":{\"name\":\"2021 IEEE Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS52927.2021.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

神经形态计算中使用的受生物学启发的尖峰神经元是带有动态状态变量的非线性滤波器——与深度学习中使用的无状态神经元模型非常不同。下一个版本的英特尔的神经形态研究处理器,Loihi 2,支持广泛的状态脉冲神经元模型与完全可编程的动态。在这里,我们展示了先进的峰值神经元模型,可用于在仿真Loihi 2硬件上的仿真实验中有效地处理流数据。在一个例子中,谐振-火(RF)神经元用于计算短时傅里叶变换(STFT),其计算复杂度与传统STFT相似,但输出带宽比传统STFT少47倍。在另一个例子中,我们描述了一种使用时空RF神经元进行光流估计的算法,该算法需要的操作比传统的基于dnn的解决方案少90倍以上。我们还展示了使用反向传播训练射频神经元进行音频分类任务的有希望的初步结果。最后,我们展示了Hopf谐振器级联- RF神经元的一种变体-复制了耳蜗的新特性,并激发了一个高效的基于尖峰的频谱图编码器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Neuromorphic Signal Processing with Loihi 2
The biologically inspired spiking neurons used in neuromorphic computing are nonlinear filters with dynamic state variables—very different from the stateless neuron models used in deep learning. The next version of Intel's neuromorphic research processor, Loihi 2, supports a wide range of stateful spiking neuron models with fully programmable dynamics. Here we showcase advanced spiking neuron models that can be used to efficiently process streaming data in simulation experiments on emulated Loihi 2 hardware. In one example, Resonate-and-Fire (RF) neurons are used to compute the Short Time Fourier Transform (STFT) with similar computational complexity but 47x less output bandwidth than the conventional STFT. In another example, we describe an algorithm for optical flow estimation using spatiotemporal RF neurons that requires over 90x fewer operations than a conventional DNN-based solution. We also demonstrate promising preliminary results using backpropagation to train RF neurons for audio classification tasks. Finally, we show that a cascade of Hopf resonators—a variant of the RF neuron—replicates novel properties of the cochlea and motivates an efficient spike-based spectrogram encoder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信