基于基准的云端自动扩展Web应用的成本分析

Luciano Ocone, M. Rak, Umberto Villano
{"title":"基于基准的云端自动扩展Web应用的成本分析","authors":"Luciano Ocone, M. Rak, Umberto Villano","doi":"10.1109/WETICE.2019.00027","DOIUrl":null,"url":null,"abstract":"Applications executed in the cloud can exploit its elasticity features, varying dynamically the amount of leased resources so as to adapt to load variations and to guarantee good quality of service. As auto scaling has severe implications on execution costs, making optimal scaling choices is of paramount importance. This paper presents an analysis method based on off-line benchmarking that allows to define scaling policies to be used by auto-scalers. The indexes obtained by benchmarking multiple deployment configurations can be used on-line, to scale the application making a trade-off between cost and user-perceived performance.","PeriodicalId":116875,"journal":{"name":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Benchmark-Based Cost Analysis of Auto Scaling Web Applications in the Cloud\",\"authors\":\"Luciano Ocone, M. Rak, Umberto Villano\",\"doi\":\"10.1109/WETICE.2019.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications executed in the cloud can exploit its elasticity features, varying dynamically the amount of leased resources so as to adapt to load variations and to guarantee good quality of service. As auto scaling has severe implications on execution costs, making optimal scaling choices is of paramount importance. This paper presents an analysis method based on off-line benchmarking that allows to define scaling policies to be used by auto-scalers. The indexes obtained by benchmarking multiple deployment configurations can be used on-line, to scale the application making a trade-off between cost and user-perceived performance.\",\"PeriodicalId\":116875,\"journal\":{\"name\":\"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WETICE.2019.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE.2019.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在云中执行的应用程序可以利用其弹性特性,动态地改变租用资源的数量,以适应负载变化并保证良好的服务质量。由于自动扩展对执行成本有严重影响,因此做出最佳扩展选择至关重要。本文提出了一种基于离线基准测试的分析方法,该方法允许定义自动缩放器使用的缩放策略。通过对多个部署配置进行基准测试获得的索引可以在线使用,以便在成本和用户感知的性能之间进行权衡,从而扩展应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmark-Based Cost Analysis of Auto Scaling Web Applications in the Cloud
Applications executed in the cloud can exploit its elasticity features, varying dynamically the amount of leased resources so as to adapt to load variations and to guarantee good quality of service. As auto scaling has severe implications on execution costs, making optimal scaling choices is of paramount importance. This paper presents an analysis method based on off-line benchmarking that allows to define scaling policies to be used by auto-scalers. The indexes obtained by benchmarking multiple deployment configurations can be used on-line, to scale the application making a trade-off between cost and user-perceived performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信