用深度神经网络预测人类隐喻

Yuri Bizzoni, Shalom Lappin
{"title":"用深度神经网络预测人类隐喻","authors":"Yuri Bizzoni, Shalom Lappin","doi":"10.18653/v1/W18-0906","DOIUrl":null,"url":null,"abstract":"We propose a new annotated corpus for metaphor interpretation by paraphrase, and a novel DNN model for performing this task. Our corpus consists of 200 sets of 5 sentences, with each set containing one reference metaphorical sentence, and four ranked candidate paraphrases. Our model is trained for a binary classification of paraphrase candidates, and then used to predict graded paraphrase acceptability. It reaches an encouraging 75% accuracy on the binary classification task, and high Pearson (.75) and Spearman (.68) correlations on the gradient judgment prediction task.","PeriodicalId":190853,"journal":{"name":"Fig-Lang@NAACL-HLT","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Predicting Human Metaphor Paraphrase Judgments with Deep Neural Networks\",\"authors\":\"Yuri Bizzoni, Shalom Lappin\",\"doi\":\"10.18653/v1/W18-0906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new annotated corpus for metaphor interpretation by paraphrase, and a novel DNN model for performing this task. Our corpus consists of 200 sets of 5 sentences, with each set containing one reference metaphorical sentence, and four ranked candidate paraphrases. Our model is trained for a binary classification of paraphrase candidates, and then used to predict graded paraphrase acceptability. It reaches an encouraging 75% accuracy on the binary classification task, and high Pearson (.75) and Spearman (.68) correlations on the gradient judgment prediction task.\",\"PeriodicalId\":190853,\"journal\":{\"name\":\"Fig-Lang@NAACL-HLT\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fig-Lang@NAACL-HLT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-0906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fig-Lang@NAACL-HLT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-0906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了一个新的注释语料库,用于通过意译来解释隐喻,并提出了一个新的深度神经网络模型来执行这一任务。我们的语料库由200组5个句子组成,每组包含一个参考隐喻句子和四个排序的候选释义。我们的模型被训练为一个二元分类的意译候选人,然后用于预测分级意译可接受性。它在二元分类任务上达到了令人鼓舞的75%的准确率,在梯度判断预测任务上达到了很高的Pearson(.75)和Spearman(.68)相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Human Metaphor Paraphrase Judgments with Deep Neural Networks
We propose a new annotated corpus for metaphor interpretation by paraphrase, and a novel DNN model for performing this task. Our corpus consists of 200 sets of 5 sentences, with each set containing one reference metaphorical sentence, and four ranked candidate paraphrases. Our model is trained for a binary classification of paraphrase candidates, and then used to predict graded paraphrase acceptability. It reaches an encouraging 75% accuracy on the binary classification task, and high Pearson (.75) and Spearman (.68) correlations on the gradient judgment prediction task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信