{"title":"用深度神经网络预测人类隐喻","authors":"Yuri Bizzoni, Shalom Lappin","doi":"10.18653/v1/W18-0906","DOIUrl":null,"url":null,"abstract":"We propose a new annotated corpus for metaphor interpretation by paraphrase, and a novel DNN model for performing this task. Our corpus consists of 200 sets of 5 sentences, with each set containing one reference metaphorical sentence, and four ranked candidate paraphrases. Our model is trained for a binary classification of paraphrase candidates, and then used to predict graded paraphrase acceptability. It reaches an encouraging 75% accuracy on the binary classification task, and high Pearson (.75) and Spearman (.68) correlations on the gradient judgment prediction task.","PeriodicalId":190853,"journal":{"name":"Fig-Lang@NAACL-HLT","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Predicting Human Metaphor Paraphrase Judgments with Deep Neural Networks\",\"authors\":\"Yuri Bizzoni, Shalom Lappin\",\"doi\":\"10.18653/v1/W18-0906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new annotated corpus for metaphor interpretation by paraphrase, and a novel DNN model for performing this task. Our corpus consists of 200 sets of 5 sentences, with each set containing one reference metaphorical sentence, and four ranked candidate paraphrases. Our model is trained for a binary classification of paraphrase candidates, and then used to predict graded paraphrase acceptability. It reaches an encouraging 75% accuracy on the binary classification task, and high Pearson (.75) and Spearman (.68) correlations on the gradient judgment prediction task.\",\"PeriodicalId\":190853,\"journal\":{\"name\":\"Fig-Lang@NAACL-HLT\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fig-Lang@NAACL-HLT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-0906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fig-Lang@NAACL-HLT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-0906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Human Metaphor Paraphrase Judgments with Deep Neural Networks
We propose a new annotated corpus for metaphor interpretation by paraphrase, and a novel DNN model for performing this task. Our corpus consists of 200 sets of 5 sentences, with each set containing one reference metaphorical sentence, and four ranked candidate paraphrases. Our model is trained for a binary classification of paraphrase candidates, and then used to predict graded paraphrase acceptability. It reaches an encouraging 75% accuracy on the binary classification task, and high Pearson (.75) and Spearman (.68) correlations on the gradient judgment prediction task.