某些Cayley图族谱的数值研究

J. Lafferty, D. Rockmore
{"title":"某些Cayley图族谱的数值研究","authors":"J. Lafferty, D. Rockmore","doi":"10.1090/dimacs/010/06","DOIUrl":null,"url":null,"abstract":"In this paper we extend some earlier computations 8]. In particular, the expanding behavior of Cayley graphs of PSL2(F107) is compared with that of the Cayley graphs for the group A10. These computations support the (up to now) unvoiced conjecture of Lubotzky that the symmetric groups and projective linear groups have asymptotically diierent average expanding behavior. We also give a thorough spectral analysis for a natural family of Cayley graphs which does not admit analysis by Selberg's theorem.","PeriodicalId":343292,"journal":{"name":"Expanding Graphs","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Numerical Investigation of the Spectrum for Certain Families of Cayley Graphs\",\"authors\":\"J. Lafferty, D. Rockmore\",\"doi\":\"10.1090/dimacs/010/06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend some earlier computations 8]. In particular, the expanding behavior of Cayley graphs of PSL2(F107) is compared with that of the Cayley graphs for the group A10. These computations support the (up to now) unvoiced conjecture of Lubotzky that the symmetric groups and projective linear groups have asymptotically diierent average expanding behavior. We also give a thorough spectral analysis for a natural family of Cayley graphs which does not admit analysis by Selberg's theorem.\",\"PeriodicalId\":343292,\"journal\":{\"name\":\"Expanding Graphs\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expanding Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/010/06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expanding Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/010/06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在本文中,我们扩展了一些先前的计算[8]。特别比较了PSL2(F107)的Cayley图与A10群的Cayley图的展开行为。这些计算支持了Lubotzky关于对称群和射影线性群具有渐近不同的平均展开行为的(迄今为止)未证实的猜想。对于不能用Selberg定理进行分析的Cayley图的自然族,我们也给出了详尽的谱分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Investigation of the Spectrum for Certain Families of Cayley Graphs
In this paper we extend some earlier computations 8]. In particular, the expanding behavior of Cayley graphs of PSL2(F107) is compared with that of the Cayley graphs for the group A10. These computations support the (up to now) unvoiced conjecture of Lubotzky that the symmetric groups and projective linear groups have asymptotically diierent average expanding behavior. We also give a thorough spectral analysis for a natural family of Cayley graphs which does not admit analysis by Selberg's theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信