通过三角线矩阵结算的数字问题研究(案例研究:计算电势势)

Bina Teknika Pub Date : 2017-08-02 DOI:10.54378/bt.v13i1.21
Tatik Juwariyah
{"title":"通过三角线矩阵结算的数字问题研究(案例研究:计算电势势)","authors":"Tatik Juwariyah","doi":"10.54378/bt.v13i1.21","DOIUrl":null,"url":null,"abstract":"A numerical study of the solution of boundary value problems with the tridiagonal matrix approach has been done. The case studied is computing the electrical potential expressed by 1D Poisson’s equation with boundary conditions. The 1D Poisson’s equation are then discreted with the finite different method so as to form a system of linier equations. The system of non homogeneous linear equations that can be formed is a tridiagonal matrix. Then the matrix is solved by Gaussian elimination algorithm. On this study, the algorithm is implemented on three programming languages namely, Fortran, Java and MATLAB.","PeriodicalId":441070,"journal":{"name":"Bina Teknika","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KAJIAN NUMERIK MASALAH SYARAT BATAS MELALUI PENYELESAIAN MATRIKS TRIDIAGONAL (Studi Kasus : Menghitung Potensial Listrik)\",\"authors\":\"Tatik Juwariyah\",\"doi\":\"10.54378/bt.v13i1.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical study of the solution of boundary value problems with the tridiagonal matrix approach has been done. The case studied is computing the electrical potential expressed by 1D Poisson’s equation with boundary conditions. The 1D Poisson’s equation are then discreted with the finite different method so as to form a system of linier equations. The system of non homogeneous linear equations that can be formed is a tridiagonal matrix. Then the matrix is solved by Gaussian elimination algorithm. On this study, the algorithm is implemented on three programming languages namely, Fortran, Java and MATLAB.\",\"PeriodicalId\":441070,\"journal\":{\"name\":\"Bina Teknika\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bina Teknika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54378/bt.v13i1.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bina Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54378/bt.v13i1.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用三对角矩阵方法对边值问题的求解进行了数值研究。本文研究的是计算具有边界条件的一维泊松方程表示的电势。然后用有限差分法对一维泊松方程进行离散,形成一个线性方程组。可以形成的非齐次线性方程组是一个三对角矩阵。然后用高斯消去算法求解矩阵。在本研究中,算法在Fortran、Java和MATLAB三种编程语言上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KAJIAN NUMERIK MASALAH SYARAT BATAS MELALUI PENYELESAIAN MATRIKS TRIDIAGONAL (Studi Kasus : Menghitung Potensial Listrik)
A numerical study of the solution of boundary value problems with the tridiagonal matrix approach has been done. The case studied is computing the electrical potential expressed by 1D Poisson’s equation with boundary conditions. The 1D Poisson’s equation are then discreted with the finite different method so as to form a system of linier equations. The system of non homogeneous linear equations that can be formed is a tridiagonal matrix. Then the matrix is solved by Gaussian elimination algorithm. On this study, the algorithm is implemented on three programming languages namely, Fortran, Java and MATLAB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信