大规模并行生物电路模拟器的研制

R. Schiek, E. May
{"title":"大规模并行生物电路模拟器的研制","authors":"R. Schiek, E. May","doi":"10.1109/CSB.2003.1227426","DOIUrl":null,"url":null,"abstract":"Genetic expression and control pathways can be successfully modeled as electrical circuits. Given the vast quantity of genomic data, very large and complex genetic circuits can be constructed. To tackle such problems, the massively-parallel, electronic circuit simulator, Xyce/sup /spl trade//, is being adapted to address biological problems. Unique to this biocircuit simulator is the ability to simulate not just one or a set of genetic circuits in a cell, but many cells and their internal circuits interacting through a common environment. Currently, electric circuit analogs for common biological and chemical machinery have been created. Using such analogs, one can construct expression, regulation and reaction networks. Individual species can be connected to other networks or cells via nondiffusive or diffusive channels (i.e. regions where species diffusion limits mass transport). Within any cell, a hierarchy of networks may exist operating at different time-scales to represent different aspects of cellular processes. Though under development, this simulator can model interesting biological and chemical systems. Prokaryotic genetic and metabolic regulatory circuits have been constructed and their interactions simulated for Escherichia coli's tryptophan biosynthesis pathway. Additionally, groups of cells each containing an internal reaction network and communicating via a diffusion limited environment can produce periodic concentration waves. Thus, this biological circuit simulator has the potential to explore large, complex systems and environmentally coupled problems.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"406 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Development of a massively-parallel, biological circuit simulator\",\"authors\":\"R. Schiek, E. May\",\"doi\":\"10.1109/CSB.2003.1227426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic expression and control pathways can be successfully modeled as electrical circuits. Given the vast quantity of genomic data, very large and complex genetic circuits can be constructed. To tackle such problems, the massively-parallel, electronic circuit simulator, Xyce/sup /spl trade//, is being adapted to address biological problems. Unique to this biocircuit simulator is the ability to simulate not just one or a set of genetic circuits in a cell, but many cells and their internal circuits interacting through a common environment. Currently, electric circuit analogs for common biological and chemical machinery have been created. Using such analogs, one can construct expression, regulation and reaction networks. Individual species can be connected to other networks or cells via nondiffusive or diffusive channels (i.e. regions where species diffusion limits mass transport). Within any cell, a hierarchy of networks may exist operating at different time-scales to represent different aspects of cellular processes. Though under development, this simulator can model interesting biological and chemical systems. Prokaryotic genetic and metabolic regulatory circuits have been constructed and their interactions simulated for Escherichia coli's tryptophan biosynthesis pathway. Additionally, groups of cells each containing an internal reaction network and communicating via a diffusion limited environment can produce periodic concentration waves. Thus, this biological circuit simulator has the potential to explore large, complex systems and environmentally coupled problems.\",\"PeriodicalId\":147883,\"journal\":{\"name\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"volume\":\"406 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSB.2003.1227426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

遗传表达和控制途径可以成功地建模为电路。鉴于基因组数据的巨大数量,可以构建非常庞大和复杂的遗传回路。为了解决这些问题,大规模并行的电子电路模拟器Xyce/sup /spl trade//正在被用于解决生物问题。这种生物电路模拟器的独特之处在于,它不仅能够模拟细胞中的一个或一组遗传电路,而且能够模拟许多细胞及其内部电路在共同环境中的相互作用。目前,常见的生物和化学机械的电路类似物已经被创造出来。利用这些类似物,人们可以构建表达、调节和反应网络。单个物种可以通过非扩散或扩散通道(即物种扩散限制质量传递的区域)连接到其他网络或细胞。在任何细胞内,都可能存在以不同时间尺度运行的网络层次,以代表细胞过程的不同方面。虽然还在开发中,这个模拟器可以模拟有趣的生物和化学系统。构建了大肠杆菌色氨酸生物合成途径的原核遗传和代谢调控回路,并模拟了它们之间的相互作用。此外,每组细胞都包含一个内部反应网络,并通过扩散限制的环境进行通信,可以产生周期性的浓度波。因此,这种生物电路模拟器具有探索大型复杂系统和环境耦合问题的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a massively-parallel, biological circuit simulator
Genetic expression and control pathways can be successfully modeled as electrical circuits. Given the vast quantity of genomic data, very large and complex genetic circuits can be constructed. To tackle such problems, the massively-parallel, electronic circuit simulator, Xyce/sup /spl trade//, is being adapted to address biological problems. Unique to this biocircuit simulator is the ability to simulate not just one or a set of genetic circuits in a cell, but many cells and their internal circuits interacting through a common environment. Currently, electric circuit analogs for common biological and chemical machinery have been created. Using such analogs, one can construct expression, regulation and reaction networks. Individual species can be connected to other networks or cells via nondiffusive or diffusive channels (i.e. regions where species diffusion limits mass transport). Within any cell, a hierarchy of networks may exist operating at different time-scales to represent different aspects of cellular processes. Though under development, this simulator can model interesting biological and chemical systems. Prokaryotic genetic and metabolic regulatory circuits have been constructed and their interactions simulated for Escherichia coli's tryptophan biosynthesis pathway. Additionally, groups of cells each containing an internal reaction network and communicating via a diffusion limited environment can produce periodic concentration waves. Thus, this biological circuit simulator has the potential to explore large, complex systems and environmentally coupled problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信