基于支持向量机的垃圾邮件过滤与参数选择田口法

Wei-Chih Hsu, Tsan-Ying Yu
{"title":"基于支持向量机的垃圾邮件过滤与参数选择田口法","authors":"Wei-Chih Hsu, Tsan-Ying Yu","doi":"10.4156/JCIT.VOL5.ISSUE8.9","DOIUrl":null,"url":null,"abstract":"Support Vector Machines (SVM) is a powerful classification technique in data mining and has been successfully applied to many real-world applications. Parameter selection of SVM will affect classification performance much during training process. However, parameter selection of SVM is usually identified by experience or grid search (GS). In this study, we use Taguchi method to make optimal approximation for the SVM-based E-mail Spam Filtering model. Six real-world mail data sets are selected to demonstrate the effectiveness and feasibility of the method. The results show that the Taguchi method can find the effective model with high classification accuracy.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"E-mail Spam Filtering Based on Support Vector Machines with Taguchi Method for Parameter Selection\",\"authors\":\"Wei-Chih Hsu, Tsan-Ying Yu\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE8.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machines (SVM) is a powerful classification technique in data mining and has been successfully applied to many real-world applications. Parameter selection of SVM will affect classification performance much during training process. However, parameter selection of SVM is usually identified by experience or grid search (GS). In this study, we use Taguchi method to make optimal approximation for the SVM-based E-mail Spam Filtering model. Six real-world mail data sets are selected to demonstrate the effectiveness and feasibility of the method. The results show that the Taguchi method can find the effective model with high classification accuracy.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

支持向量机(SVM)是一种强大的数据挖掘分类技术,已成功地应用于许多实际应用中。在训练过程中,支持向量机的参数选择对分类性能影响很大。然而,支持向量机的参数选择通常是通过经验或网格搜索(GS)来确定的。在本研究中,我们使用田口方法对基于支持向量机的电子邮件垃圾邮件过滤模型进行最优逼近。选择了六个真实邮件数据集来验证该方法的有效性和可行性。结果表明,田口方法能找到分类精度较高的有效模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-mail Spam Filtering Based on Support Vector Machines with Taguchi Method for Parameter Selection
Support Vector Machines (SVM) is a powerful classification technique in data mining and has been successfully applied to many real-world applications. Parameter selection of SVM will affect classification performance much during training process. However, parameter selection of SVM is usually identified by experience or grid search (GS). In this study, we use Taguchi method to make optimal approximation for the SVM-based E-mail Spam Filtering model. Six real-world mail data sets are selected to demonstrate the effectiveness and feasibility of the method. The results show that the Taguchi method can find the effective model with high classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信