利用人工神经网络提高单幅RGB图像的LANDSAT光谱带空间分辨率

A. M. Junior, Pedro Rossa, Rafael Kenji Horota, Diego Brum, E. Souza, A. S. Aires, L. S. Kupssinskü, M. Veronez, L. Gonzaga, C. Cazarin
{"title":"利用人工神经网络提高单幅RGB图像的LANDSAT光谱带空间分辨率","authors":"A. M. Junior, Pedro Rossa, Rafael Kenji Horota, Diego Brum, E. Souza, A. S. Aires, L. S. Kupssinskü, M. Veronez, L. Gonzaga, C. Cazarin","doi":"10.1109/ICST46873.2019.9047670","DOIUrl":null,"url":null,"abstract":"Spectral information provided by multispectral and hyperspectral sensors has a great impact on remote sensing studies. These sensors are embedded in aircrafts and satellites like the Landsat, which has more data freely available but lack the spatial resolution that suborbital sensors have. To increase the spatial resolution, a series of techniques have been developed like pansharpenning data fusion and more advanced convolutional neural networks for super-resolution, however, the later requires large datasets. To overcome this requirement, this work aims to increase the spatial resolution of Landsat spectral bands using artificial neural networks that uses pixel kernels of a single high-resolution image from Google Earth. Using this method, the high-resolution spectral bands were generated with pixel size of 1m in contrast to the 15m of pansharpenned Landsat bands. The evaluate the predicted spectral bands the validation measures Universal Quality Index (UQI) and Spectral Angle Mapper (SAM) were used, showing values of 0.98 and 0.16 respectively, presenting good results.","PeriodicalId":344937,"journal":{"name":"2019 13th International Conference on Sensing Technology (ICST)","volume":"347 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving spatial resolution of LANDSAT spectral bands from a single RGB image using artificial neural network\",\"authors\":\"A. M. Junior, Pedro Rossa, Rafael Kenji Horota, Diego Brum, E. Souza, A. S. Aires, L. S. Kupssinskü, M. Veronez, L. Gonzaga, C. Cazarin\",\"doi\":\"10.1109/ICST46873.2019.9047670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral information provided by multispectral and hyperspectral sensors has a great impact on remote sensing studies. These sensors are embedded in aircrafts and satellites like the Landsat, which has more data freely available but lack the spatial resolution that suborbital sensors have. To increase the spatial resolution, a series of techniques have been developed like pansharpenning data fusion and more advanced convolutional neural networks for super-resolution, however, the later requires large datasets. To overcome this requirement, this work aims to increase the spatial resolution of Landsat spectral bands using artificial neural networks that uses pixel kernels of a single high-resolution image from Google Earth. Using this method, the high-resolution spectral bands were generated with pixel size of 1m in contrast to the 15m of pansharpenned Landsat bands. The evaluate the predicted spectral bands the validation measures Universal Quality Index (UQI) and Spectral Angle Mapper (SAM) were used, showing values of 0.98 and 0.16 respectively, presenting good results.\",\"PeriodicalId\":344937,\"journal\":{\"name\":\"2019 13th International Conference on Sensing Technology (ICST)\",\"volume\":\"347 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 13th International Conference on Sensing Technology (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICST46873.2019.9047670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 13th International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST46873.2019.9047670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多光谱和高光谱传感器提供的光谱信息对遥感研究具有重要影响。这些传感器被嵌入飞机和陆地卫星(Landsat)等卫星中,它们可以自由获取更多数据,但缺乏亚轨道传感器所具有的空间分辨率。为了提高空间分辨率,人们开发了一系列技术,如pansharpenning数据融合和更先进的超分辨率卷积神经网络,但后者需要大数据集。为了克服这一要求,本工作旨在使用人工神经网络提高陆地卫星光谱带的空间分辨率,该网络使用来自谷歌地球的单个高分辨率图像的像素核。与pansharpenned Landsat波段的15m像素相比,该方法生成了1m像素的高分辨率光谱带。采用通用质量指数(Universal Quality Index, UQI)和光谱角映射器(spectral Angle Mapper, SAM)对预测光谱波段进行评价,结果分别为0.98和0.16,效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving spatial resolution of LANDSAT spectral bands from a single RGB image using artificial neural network
Spectral information provided by multispectral and hyperspectral sensors has a great impact on remote sensing studies. These sensors are embedded in aircrafts and satellites like the Landsat, which has more data freely available but lack the spatial resolution that suborbital sensors have. To increase the spatial resolution, a series of techniques have been developed like pansharpenning data fusion and more advanced convolutional neural networks for super-resolution, however, the later requires large datasets. To overcome this requirement, this work aims to increase the spatial resolution of Landsat spectral bands using artificial neural networks that uses pixel kernels of a single high-resolution image from Google Earth. Using this method, the high-resolution spectral bands were generated with pixel size of 1m in contrast to the 15m of pansharpenned Landsat bands. The evaluate the predicted spectral bands the validation measures Universal Quality Index (UQI) and Spectral Angle Mapper (SAM) were used, showing values of 0.98 and 0.16 respectively, presenting good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信