广义谱序列的有效计算

Andrea Guidolin, A. Romero
{"title":"广义谱序列的有效计算","authors":"Andrea Guidolin, A. Romero","doi":"10.1145/3208976.3208984","DOIUrl":null,"url":null,"abstract":"In this paper, we present some algorithms and programs for computing generalized spectral sequences, a useful tool in Computational Algebraic Topology which provides topological information on spaces with generalized filtrations over a poset. Our programs have been implemented as a new module for the Kenzo system and solve the classical problems of spectral sequences which are differential maps and extensions. Moreover, combined with the use of effective homology and discrete vector fields, the programs make it possible to compute generalized spectral sequences of big spaces, sometimes of infinite type.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Effective Computation of Generalized Spectral Sequences\",\"authors\":\"Andrea Guidolin, A. Romero\",\"doi\":\"10.1145/3208976.3208984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present some algorithms and programs for computing generalized spectral sequences, a useful tool in Computational Algebraic Topology which provides topological information on spaces with generalized filtrations over a poset. Our programs have been implemented as a new module for the Kenzo system and solve the classical problems of spectral sequences which are differential maps and extensions. Moreover, combined with the use of effective homology and discrete vector fields, the programs make it possible to compute generalized spectral sequences of big spaces, sometimes of infinite type.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"PP 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3208984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3208984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文给出了计算广义谱序列的一些算法和程序,广义谱序列是计算代数拓扑中的一个有用工具,它提供了在偏序集上具有广义滤波的空间的拓扑信息。我们的程序已经作为Kenzo系统的一个新模块实现,并解决了光谱序列的微分映射和扩展的经典问题。此外,结合有效同调和离散向量场的使用,这些程序使计算大空间的广义谱序列成为可能,有时是无限型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Computation of Generalized Spectral Sequences
In this paper, we present some algorithms and programs for computing generalized spectral sequences, a useful tool in Computational Algebraic Topology which provides topological information on spaces with generalized filtrations over a poset. Our programs have been implemented as a new module for the Kenzo system and solve the classical problems of spectral sequences which are differential maps and extensions. Moreover, combined with the use of effective homology and discrete vector fields, the programs make it possible to compute generalized spectral sequences of big spaces, sometimes of infinite type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信