基于Riesz势的梯度函数的逐点估计的结果——Gagliardo-Nirenberg不等式

Sudheer Khan, Wang Shu, Monica Abhidha
{"title":"基于Riesz势的梯度函数的逐点估计的结果——Gagliardo-Nirenberg不等式","authors":"Sudheer Khan, Wang Shu, Monica Abhidha","doi":"10.11648/J.SJAMS.20200805.11","DOIUrl":null,"url":null,"abstract":"Our aim in this study is to give the Gagliardo-Nirenberg Inequality as a consequence of pointwise estimates for the function in terms of the Riesz potential of the gradient. Our aim here is to discuss boundedness of Reisz potential in term of maximal functions and to give the proof for Gagliardo-Nirenberg Inequality in term of Reisz potential. We will extend our result to discuss weak type estimate for Gagliaro-Nirenberg Sobolev inequality. Further, in this paper we are interested to extract Sobolev type inequality in terms of Riesz potentials for α is equal to one and to extend our work for weak type estimates when p is equal to one.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gagliardo-Nirenberg Inequality as a Consequence of Pointwise Estimates for the Functions in Terms of Riesz Potential of Gradient\",\"authors\":\"Sudheer Khan, Wang Shu, Monica Abhidha\",\"doi\":\"10.11648/J.SJAMS.20200805.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our aim in this study is to give the Gagliardo-Nirenberg Inequality as a consequence of pointwise estimates for the function in terms of the Riesz potential of the gradient. Our aim here is to discuss boundedness of Reisz potential in term of maximal functions and to give the proof for Gagliardo-Nirenberg Inequality in term of Reisz potential. We will extend our result to discuss weak type estimate for Gagliaro-Nirenberg Sobolev inequality. Further, in this paper we are interested to extract Sobolev type inequality in terms of Riesz potentials for α is equal to one and to extend our work for weak type estimates when p is equal to one.\",\"PeriodicalId\":422938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJAMS.20200805.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20200805.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们的目的是给出Gagliardo-Nirenberg不等式作为根据梯度的Riesz势对函数进行逐点估计的结果。本文的目的是讨论极大函数中赖兹势的有界性,并给出赖兹势中伽利亚多-尼伦伯格不等式的证明。我们将推广我们的结果来讨论Gagliaro-Nirenberg Sobolev不等式的弱型估计。此外,在本文中,我们有兴趣从α = 1的Riesz势中提取Sobolev型不等式,并将我们的工作扩展到p = 1时的弱型估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gagliardo-Nirenberg Inequality as a Consequence of Pointwise Estimates for the Functions in Terms of Riesz Potential of Gradient
Our aim in this study is to give the Gagliardo-Nirenberg Inequality as a consequence of pointwise estimates for the function in terms of the Riesz potential of the gradient. Our aim here is to discuss boundedness of Reisz potential in term of maximal functions and to give the proof for Gagliardo-Nirenberg Inequality in term of Reisz potential. We will extend our result to discuss weak type estimate for Gagliaro-Nirenberg Sobolev inequality. Further, in this paper we are interested to extract Sobolev type inequality in terms of Riesz potentials for α is equal to one and to extend our work for weak type estimates when p is equal to one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信