基于分数阶模型的直流电机闭环系统辨识

Pritesh Shah, R. Sekhar
{"title":"基于分数阶模型的直流电机闭环系统辨识","authors":"Pritesh Shah, R. Sekhar","doi":"10.1109/MoRSE48060.2019.8998744","DOIUrl":null,"url":null,"abstract":"Good mathematical models are vital for design of model based controllers and accurate system response predictions. Such mathematical models can be derived by employing either first principle method or empirical method. Empirical method involves model identification based on input and output data. This method is also known as system identification. Many real-time systems are inherently closed loop systems. Moreover, it is not possible to get data from an open loop system in process industry. In such cases, closed loop system identification is useful. In system identification, selection of model structure is critical. In this paper, a first order integer model and four different fractional models were identified for a DC motor in closed loop. Fractional order model parameters were optimized by minimization of sum of squared errors (SSE), using Genetic Algorithm (GA). Results show that fractional order models fit better than first order integer model. Among the four fractional models identified, the fractional model with least parameters yielded best result.","PeriodicalId":111606,"journal":{"name":"2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Closed Loop System Identification of a DC Motor using Fractional Order Model\",\"authors\":\"Pritesh Shah, R. Sekhar\",\"doi\":\"10.1109/MoRSE48060.2019.8998744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Good mathematical models are vital for design of model based controllers and accurate system response predictions. Such mathematical models can be derived by employing either first principle method or empirical method. Empirical method involves model identification based on input and output data. This method is also known as system identification. Many real-time systems are inherently closed loop systems. Moreover, it is not possible to get data from an open loop system in process industry. In such cases, closed loop system identification is useful. In system identification, selection of model structure is critical. In this paper, a first order integer model and four different fractional models were identified for a DC motor in closed loop. Fractional order model parameters were optimized by minimization of sum of squared errors (SSE), using Genetic Algorithm (GA). Results show that fractional order models fit better than first order integer model. Among the four fractional models identified, the fractional model with least parameters yielded best result.\",\"PeriodicalId\":111606,\"journal\":{\"name\":\"2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MoRSE48060.2019.8998744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MoRSE48060.2019.8998744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

良好的数学模型对于基于模型的控制器设计和准确的系统响应预测至关重要。这种数学模型可以采用第一性原理法或经验方法来推导。经验方法是基于输入和输出数据的模型识别。这种方法也被称为系统识别。许多实时系统本质上是闭环系统。此外,在过程工业中,从开环系统中获取数据是不可能的。在这种情况下,闭环系统识别是有用的。在系统辨识中,模型结构的选择至关重要。本文对直流电动机的一阶整数模型和四种不同的分数阶模型进行了辨识。采用遗传算法(GA)对分数阶模型参数进行优化,使误差平方和最小化。结果表明,分数阶模型的拟合效果优于一阶整数模型。在确定的四种分数阶模型中,参数最少的分数阶模型效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed Loop System Identification of a DC Motor using Fractional Order Model
Good mathematical models are vital for design of model based controllers and accurate system response predictions. Such mathematical models can be derived by employing either first principle method or empirical method. Empirical method involves model identification based on input and output data. This method is also known as system identification. Many real-time systems are inherently closed loop systems. Moreover, it is not possible to get data from an open loop system in process industry. In such cases, closed loop system identification is useful. In system identification, selection of model structure is critical. In this paper, a first order integer model and four different fractional models were identified for a DC motor in closed loop. Fractional order model parameters were optimized by minimization of sum of squared errors (SSE), using Genetic Algorithm (GA). Results show that fractional order models fit better than first order integer model. Among the four fractional models identified, the fractional model with least parameters yielded best result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信