一般相机模型的在线/实时结构和运动

G. Schweighofer, Sinisa Segvic, A. Pinz
{"title":"一般相机模型的在线/实时结构和运动","authors":"G. Schweighofer, Sinisa Segvic, A. Pinz","doi":"10.1109/WACV.2008.4544016","DOIUrl":null,"url":null,"abstract":"This paper presents a novel algorithm for online structure and motion estimation. The algorithm works for general camera models and minimizes object space error, it does not rely on gradient-based optimization, and it is provably globally convergent. In comparison to previous work, which reports cubic complexity in the number of frames, our major contribution is a significant reduction of complexity. The new algorithm requires constant time per frame and can thus be used in online applications. Experimental results show high reconstruction accuracy with respect to simulated ground truth data. We also present two applications in artificial marker reconstruction and handheld augmented reality.","PeriodicalId":439571,"journal":{"name":"2008 IEEE Workshop on Applications of Computer Vision","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Online/Realtime Structure and Motion for General Camera Models\",\"authors\":\"G. Schweighofer, Sinisa Segvic, A. Pinz\",\"doi\":\"10.1109/WACV.2008.4544016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel algorithm for online structure and motion estimation. The algorithm works for general camera models and minimizes object space error, it does not rely on gradient-based optimization, and it is provably globally convergent. In comparison to previous work, which reports cubic complexity in the number of frames, our major contribution is a significant reduction of complexity. The new algorithm requires constant time per frame and can thus be used in online applications. Experimental results show high reconstruction accuracy with respect to simulated ground truth data. We also present two applications in artificial marker reconstruction and handheld augmented reality.\",\"PeriodicalId\":439571,\"journal\":{\"name\":\"2008 IEEE Workshop on Applications of Computer Vision\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2008.4544016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2008.4544016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种新的在线结构和运动估计算法。该算法适用于一般相机模型,使目标空间误差最小,不依赖于梯度优化,具有全局收敛性。与之前的工作(报告帧数的立方复杂度)相比,我们的主要贡献是显著降低了复杂性。新算法要求每帧时间恒定,因此可以用于在线应用。实验结果表明,该方法具有较高的重建精度。我们还介绍了人工标记重建和手持增强现实的两种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online/Realtime Structure and Motion for General Camera Models
This paper presents a novel algorithm for online structure and motion estimation. The algorithm works for general camera models and minimizes object space error, it does not rely on gradient-based optimization, and it is provably globally convergent. In comparison to previous work, which reports cubic complexity in the number of frames, our major contribution is a significant reduction of complexity. The new algorithm requires constant time per frame and can thus be used in online applications. Experimental results show high reconstruction accuracy with respect to simulated ground truth data. We also present two applications in artificial marker reconstruction and handheld augmented reality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信