基于径向基函数神经网络的磁轴承主动控制器设计

Zixuan Xu, Hongze Xu
{"title":"基于径向基函数神经网络的磁轴承主动控制器设计","authors":"Zixuan Xu, Hongze Xu","doi":"10.1109/IAEAC54830.2022.9929453","DOIUrl":null,"url":null,"abstract":"This paper aims to design a high-performance and highly reliable controller, enabling stable levitation control of the active magnetic bearing (AMB) system. The distinctive features of AMB are open-loop instability and strong nonlinearity, which a PID controller can stabilize. PID controller is dependable and widely used, whereas it generates a large overshoot magnitude. Because of these problems, this paper utilizes the PID controller to stabilize the closed-loop system of AMB and uses a radial basis function neural network (RBFNN) to optimize PID manipulator parameters according to the operating conditions. And the optimization can reduce the impact of nonlinearity. Plus, Simulink simulation for PID controller based on RBFNN is carried out, which proves that in comparison to classical PID algorithm, the oscillation during the suspension is shortened substantially, and the performance of anti-interference can become stronger with the increase of learning time.","PeriodicalId":349113,"journal":{"name":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Magnetic Bearing Controller Design based on Radial Basis Function Neural Network\",\"authors\":\"Zixuan Xu, Hongze Xu\",\"doi\":\"10.1109/IAEAC54830.2022.9929453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to design a high-performance and highly reliable controller, enabling stable levitation control of the active magnetic bearing (AMB) system. The distinctive features of AMB are open-loop instability and strong nonlinearity, which a PID controller can stabilize. PID controller is dependable and widely used, whereas it generates a large overshoot magnitude. Because of these problems, this paper utilizes the PID controller to stabilize the closed-loop system of AMB and uses a radial basis function neural network (RBFNN) to optimize PID manipulator parameters according to the operating conditions. And the optimization can reduce the impact of nonlinearity. Plus, Simulink simulation for PID controller based on RBFNN is carried out, which proves that in comparison to classical PID algorithm, the oscillation during the suspension is shortened substantially, and the performance of anti-interference can become stronger with the increase of learning time.\",\"PeriodicalId\":349113,\"journal\":{\"name\":\"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC54830.2022.9929453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC54830.2022.9929453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在设计一种高性能、高可靠性的控制器,实现主动磁轴承(AMB)系统的稳定悬浮控制。AMB的显著特点是开环不稳定性和强非线性,PID控制器可以使其稳定。PID控制可靠,应用广泛,但其超调量较大。针对这些问题,本文利用PID控制器来稳定AMB的闭环系统,并利用径向基函数神经网络(RBFNN)根据工况对PID机械手参数进行优化。通过优化可以减小非线性的影响。另外,对基于RBFNN的PID控制器进行了Simulink仿真,结果表明,与经典PID算法相比,悬架过程中的振荡大大缩短,且随着学习时间的增加,抗干扰性能变得更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Magnetic Bearing Controller Design based on Radial Basis Function Neural Network
This paper aims to design a high-performance and highly reliable controller, enabling stable levitation control of the active magnetic bearing (AMB) system. The distinctive features of AMB are open-loop instability and strong nonlinearity, which a PID controller can stabilize. PID controller is dependable and widely used, whereas it generates a large overshoot magnitude. Because of these problems, this paper utilizes the PID controller to stabilize the closed-loop system of AMB and uses a radial basis function neural network (RBFNN) to optimize PID manipulator parameters according to the operating conditions. And the optimization can reduce the impact of nonlinearity. Plus, Simulink simulation for PID controller based on RBFNN is carried out, which proves that in comparison to classical PID algorithm, the oscillation during the suspension is shortened substantially, and the performance of anti-interference can become stronger with the increase of learning time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信