从交互中检测移动搜索的成功

Qi Guo, Shuai Yuan, Eugene Agichtein
{"title":"从交互中检测移动搜索的成功","authors":"Qi Guo, Shuai Yuan, Eugene Agichtein","doi":"10.1145/2009916.2010133","DOIUrl":null,"url":null,"abstract":"Predicting searcher success and satisfaction is a key problem in Web search, which is essential for automatic evaluating and improving search engine performance. This problem has been studied actively in the desktop search setting, but not specifically for mobile search, despite many known differences between the two modalities. As mobile devices become increasingly popular for searching the Web, improving the searcher experience on such devices is becoming crucially important. In this paper, we explore the possibility of predicting searcher success and satisfaction in mobile search with a smart phone. Specifically, we investigate client-side interaction signals, including the number of browsed pages, and touch screen-specific actions such as zooming and sliding. Exploiting this information with machine learning techniques results in nearly 80% accuracy for predicting searcher success -- significantly outperforming the previous models.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Detecting success in mobile search from interaction\",\"authors\":\"Qi Guo, Shuai Yuan, Eugene Agichtein\",\"doi\":\"10.1145/2009916.2010133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting searcher success and satisfaction is a key problem in Web search, which is essential for automatic evaluating and improving search engine performance. This problem has been studied actively in the desktop search setting, but not specifically for mobile search, despite many known differences between the two modalities. As mobile devices become increasingly popular for searching the Web, improving the searcher experience on such devices is becoming crucially important. In this paper, we explore the possibility of predicting searcher success and satisfaction in mobile search with a smart phone. Specifically, we investigate client-side interaction signals, including the number of browsed pages, and touch screen-specific actions such as zooming and sliding. Exploiting this information with machine learning techniques results in nearly 80% accuracy for predicting searcher success -- significantly outperforming the previous models.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2010133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

预测搜索成功和满意度是网络搜索中的一个关键问题,是自动评估和改进搜索引擎性能的关键。这个问题已经在桌面搜索设置中进行了积极的研究,但没有专门针对移动搜索,尽管两种模式之间存在许多已知的差异。随着移动设备在网络搜索方面变得越来越流行,改善这些设备上的搜索体验变得至关重要。在这篇文章中,我们探讨了用智能手机预测搜索成功和满意度的可能性。具体来说,我们研究客户端交互信号,包括浏览页面的数量,以及特定于触摸屏的操作,如缩放和滑动。利用机器学习技术利用这些信息,预测搜索成功的准确率接近80%,显著优于以前的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting success in mobile search from interaction
Predicting searcher success and satisfaction is a key problem in Web search, which is essential for automatic evaluating and improving search engine performance. This problem has been studied actively in the desktop search setting, but not specifically for mobile search, despite many known differences between the two modalities. As mobile devices become increasingly popular for searching the Web, improving the searcher experience on such devices is becoming crucially important. In this paper, we explore the possibility of predicting searcher success and satisfaction in mobile search with a smart phone. Specifically, we investigate client-side interaction signals, including the number of browsed pages, and touch screen-specific actions such as zooming and sliding. Exploiting this information with machine learning techniques results in nearly 80% accuracy for predicting searcher success -- significantly outperforming the previous models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信