论U-Net在复调音乐主调估计中的应用

Guillaume Doras, P. Esling, G. Peeters
{"title":"论U-Net在复调音乐主调估计中的应用","authors":"Guillaume Doras, P. Esling, G. Peeters","doi":"10.1109/MMRP.2019.8665373","DOIUrl":null,"url":null,"abstract":"Estimation of dominant melody in polyphonic music remains a difficult task, even though promising breakthroughs have been done recently with the introduction of the Harmonic CQT and the use of fully convolutional networks. In this paper, we build upon this idea and describe how U-Net- a neural network originally designed for medical image segmentation - can be used to estimate the dominant melody in polyphonic audio. We propose in particular the use of an original layer-by-layer sequential training method, and show that this method used along with careful training data conditioning improve the results compared to plain convolutional networks.","PeriodicalId":441469,"journal":{"name":"2019 International Workshop on Multilayer Music Representation and Processing (MMRP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"On the Use of U-Net for Dominant Melody Estimation in Polyphonic Music\",\"authors\":\"Guillaume Doras, P. Esling, G. Peeters\",\"doi\":\"10.1109/MMRP.2019.8665373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of dominant melody in polyphonic music remains a difficult task, even though promising breakthroughs have been done recently with the introduction of the Harmonic CQT and the use of fully convolutional networks. In this paper, we build upon this idea and describe how U-Net- a neural network originally designed for medical image segmentation - can be used to estimate the dominant melody in polyphonic audio. We propose in particular the use of an original layer-by-layer sequential training method, and show that this method used along with careful training data conditioning improve the results compared to plain convolutional networks.\",\"PeriodicalId\":441469,\"journal\":{\"name\":\"2019 International Workshop on Multilayer Music Representation and Processing (MMRP)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Workshop on Multilayer Music Representation and Processing (MMRP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMRP.2019.8665373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Workshop on Multilayer Music Representation and Processing (MMRP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMRP.2019.8665373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

估计复调音乐中的主旋律仍然是一项艰巨的任务,尽管最近随着谐波CQT的引入和全卷积网络的使用已经取得了有希望的突破。在本文中,我们以这个想法为基础,描述了如何使用U-Net——一个最初设计用于医学图像分割的神经网络——来估计复调音频中的主旋律。我们特别提出使用一种原始的逐层顺序训练方法,并表明与普通卷积网络相比,这种方法与仔细的训练数据调节一起使用可以改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Use of U-Net for Dominant Melody Estimation in Polyphonic Music
Estimation of dominant melody in polyphonic music remains a difficult task, even though promising breakthroughs have been done recently with the introduction of the Harmonic CQT and the use of fully convolutional networks. In this paper, we build upon this idea and describe how U-Net- a neural network originally designed for medical image segmentation - can be used to estimate the dominant melody in polyphonic audio. We propose in particular the use of an original layer-by-layer sequential training method, and show that this method used along with careful training data conditioning improve the results compared to plain convolutional networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信