温度对变压器油基纳米流体电导特性影响的研究

Ming Dong Xinyi, Xinyi Ma, Yang Li, Jiacheng Xie, M. Ren
{"title":"温度对变压器油基纳米流体电导特性影响的研究","authors":"Ming Dong Xinyi, Xinyi Ma, Yang Li, Jiacheng Xie, M. Ren","doi":"10.1109/ICDL.2019.8796575","DOIUrl":null,"url":null,"abstract":"Adding some nanoparticles to the transformer oil can improve its heat exchange properties as well as its dielectric withstanding characteristics, which has attract more and more attentions in the world. The conductance characteristics of transformer oil-based nanofluids (TNFs), especially at different temperatures, will help to understand the modification theory. The charge carrier transport processes at different electric fields can be divided into three stages: Ohmic, tunneling and space charge limited current (SCLC), respectively. In Ohmic stage at a very low field, the addition of nanoparticles increases the carrier number density, thus the conduction current is increased. In tunneling stage at medium to high electric field strengths, the main charge carriers in the transformer oil change from ions and colloidal particles to electrons emitted from the electrodes. The addition of nanoparticles increases the barrier thickness at the metal-liquid interface, which reduces the amount of electrons passing through the interface region. Therefore, the field strength required for electron transport is enhanced, and the dielectric strength is improved. In the space charge limited current stage at a very high electric field, the large trap density of TNFs lowers the carrier mobility, suppressing the discharge. In addition, as the temperature increases, the accelerated movement of the carriers increases the conduction current in the transformer oil. However, the electron tunneling process in the tunneling stage is little affected by the change in temperature.","PeriodicalId":102217,"journal":{"name":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Temperature Effect on Conductance Characteristics of Transformer Oil-based Nanofluids\",\"authors\":\"Ming Dong Xinyi, Xinyi Ma, Yang Li, Jiacheng Xie, M. Ren\",\"doi\":\"10.1109/ICDL.2019.8796575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adding some nanoparticles to the transformer oil can improve its heat exchange properties as well as its dielectric withstanding characteristics, which has attract more and more attentions in the world. The conductance characteristics of transformer oil-based nanofluids (TNFs), especially at different temperatures, will help to understand the modification theory. The charge carrier transport processes at different electric fields can be divided into three stages: Ohmic, tunneling and space charge limited current (SCLC), respectively. In Ohmic stage at a very low field, the addition of nanoparticles increases the carrier number density, thus the conduction current is increased. In tunneling stage at medium to high electric field strengths, the main charge carriers in the transformer oil change from ions and colloidal particles to electrons emitted from the electrodes. The addition of nanoparticles increases the barrier thickness at the metal-liquid interface, which reduces the amount of electrons passing through the interface region. Therefore, the field strength required for electron transport is enhanced, and the dielectric strength is improved. In the space charge limited current stage at a very high electric field, the large trap density of TNFs lowers the carrier mobility, suppressing the discharge. In addition, as the temperature increases, the accelerated movement of the carriers increases the conduction current in the transformer oil. However, the electron tunneling process in the tunneling stage is little affected by the change in temperature.\",\"PeriodicalId\":102217,\"journal\":{\"name\":\"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL.2019.8796575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2019.8796575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在变压器油中加入纳米颗粒可以改善变压器油的换热性能和耐介电性能,这一研究越来越受到世界各国的关注。变压器油基纳米流体(TNFs)的电导特性,特别是在不同温度下的电导特性,将有助于理解改性理论。不同电场下的载流子输运过程可分为欧姆输运、隧穿输运和空间电荷限流输运三个阶段。在极低电场的欧姆阶段,纳米粒子的加入增加了载流子数密度,从而增加了导电电流。在中、强电场作用下的隧穿阶段,变压器油中的主要载流子由离子和胶体粒子转变为电极发射的电子。纳米粒子的加入增加了金属-液体界面的势垒厚度,从而减少了通过界面区域的电子数量。因此,提高了电子输运所需的场强,提高了介电强度。在空间电荷限流阶段,在非常高的电场下,tnf的大陷阱密度降低了载流子迁移率,抑制了放电。此外,随着温度的升高,载流子的加速运动增加了变压器油中的传导电流。而在隧穿阶段,电子隧穿过程受温度变化的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Temperature Effect on Conductance Characteristics of Transformer Oil-based Nanofluids
Adding some nanoparticles to the transformer oil can improve its heat exchange properties as well as its dielectric withstanding characteristics, which has attract more and more attentions in the world. The conductance characteristics of transformer oil-based nanofluids (TNFs), especially at different temperatures, will help to understand the modification theory. The charge carrier transport processes at different electric fields can be divided into three stages: Ohmic, tunneling and space charge limited current (SCLC), respectively. In Ohmic stage at a very low field, the addition of nanoparticles increases the carrier number density, thus the conduction current is increased. In tunneling stage at medium to high electric field strengths, the main charge carriers in the transformer oil change from ions and colloidal particles to electrons emitted from the electrodes. The addition of nanoparticles increases the barrier thickness at the metal-liquid interface, which reduces the amount of electrons passing through the interface region. Therefore, the field strength required for electron transport is enhanced, and the dielectric strength is improved. In the space charge limited current stage at a very high electric field, the large trap density of TNFs lowers the carrier mobility, suppressing the discharge. In addition, as the temperature increases, the accelerated movement of the carriers increases the conduction current in the transformer oil. However, the electron tunneling process in the tunneling stage is little affected by the change in temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信