利用设施位置分析的多方位组团

Mahmood Neshati, H. Beigy, D. Hiemstra
{"title":"利用设施位置分析的多方位组团","authors":"Mahmood Neshati, H. Beigy, D. Hiemstra","doi":"10.1145/2407085.2407094","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an optimization framework to retrieve an optimal group of experts to perform a given multi-aspect task/project. Each task needs a diverse set of skills and the group of assigned experts should be able to collectively cover all required aspects of the task. We consider three types of multi-aspect team formation problems and propose a unified framework to solve these problems accurately and efficiently. Our proposed framework is based on Facility Location Analysis (FLA) which is a well known branch of the Operation Research (OR). Our experiments on a real dataset show significant improvement in comparison with the state-of-the art approaches for the team formation problem.","PeriodicalId":402985,"journal":{"name":"Australasian Document Computing Symposium","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multi-aspect group formation using facility location analysis\",\"authors\":\"Mahmood Neshati, H. Beigy, D. Hiemstra\",\"doi\":\"10.1145/2407085.2407094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an optimization framework to retrieve an optimal group of experts to perform a given multi-aspect task/project. Each task needs a diverse set of skills and the group of assigned experts should be able to collectively cover all required aspects of the task. We consider three types of multi-aspect team formation problems and propose a unified framework to solve these problems accurately and efficiently. Our proposed framework is based on Facility Location Analysis (FLA) which is a well known branch of the Operation Research (OR). Our experiments on a real dataset show significant improvement in comparison with the state-of-the art approaches for the team formation problem.\",\"PeriodicalId\":402985,\"journal\":{\"name\":\"Australasian Document Computing Symposium\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Document Computing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2407085.2407094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Document Computing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2407085.2407094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们提出了一个优化框架来检索最优专家组来执行给定的多方面任务/项目。每项任务都需要一套不同的技能,指派的专家小组应该能够共同涵盖任务的所有必要方面。我们考虑了三种类型的多方位组队问题,并提出了一个统一的框架来准确、高效地解决这些问题。我们提出的框架是基于设施位置分析(FLA),这是运筹学(OR)的一个众所周知的分支。我们在真实数据集上的实验表明,与团队形成问题的最新方法相比,我们的方法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-aspect group formation using facility location analysis
In this paper, we propose an optimization framework to retrieve an optimal group of experts to perform a given multi-aspect task/project. Each task needs a diverse set of skills and the group of assigned experts should be able to collectively cover all required aspects of the task. We consider three types of multi-aspect team formation problems and propose a unified framework to solve these problems accurately and efficiently. Our proposed framework is based on Facility Location Analysis (FLA) which is a well known branch of the Operation Research (OR). Our experiments on a real dataset show significant improvement in comparison with the state-of-the art approaches for the team formation problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信