多档口,第二部分:通过Δ系数的额外精度

D. Abramovitch
{"title":"多档口,第二部分:通过Δ系数的额外精度","authors":"D. Abramovitch","doi":"10.1109/ACC.2015.7171978","DOIUrl":null,"url":null,"abstract":"In [1], we presented a new digital filter architecture, the multinotch, which minimized the computational latency while preserving numerical accuracy even in the presence of severe quantization. While this method is far more accurate than discretizing polynomial filters, it can still be susceptible to problems caused by a sample rate which is significantly higher than the frequencies of the features that the filter is trying to implement. This paper presents a modification, called Δ coefficients, which preserve all the positive properties of the multinotch while dramatically increasing the numerical accuracy over a large frequency range.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The multinotch, part II: Extra precision via Δ coefficients\",\"authors\":\"D. Abramovitch\",\"doi\":\"10.1109/ACC.2015.7171978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [1], we presented a new digital filter architecture, the multinotch, which minimized the computational latency while preserving numerical accuracy even in the presence of severe quantization. While this method is far more accurate than discretizing polynomial filters, it can still be susceptible to problems caused by a sample rate which is significantly higher than the frequencies of the features that the filter is trying to implement. This paper presents a modification, called Δ coefficients, which preserve all the positive properties of the multinotch while dramatically increasing the numerical accuracy over a large frequency range.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7171978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7171978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在[1]中,我们提出了一种新的数字滤波器架构,即多刻,它可以最大限度地减少计算延迟,同时即使在存在严重量化的情况下也能保持数值精度。虽然这种方法比离散多项式滤波器精确得多,但它仍然容易受到采样率明显高于滤波器试图实现的特征频率所引起的问题的影响。本文提出了一种称为Δ系数的修正,它保留了多刻的所有正性质,同时在大频率范围内显着提高了数值精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The multinotch, part II: Extra precision via Δ coefficients
In [1], we presented a new digital filter architecture, the multinotch, which minimized the computational latency while preserving numerical accuracy even in the presence of severe quantization. While this method is far more accurate than discretizing polynomial filters, it can still be susceptible to problems caused by a sample rate which is significantly higher than the frequencies of the features that the filter is trying to implement. This paper presents a modification, called Δ coefficients, which preserve all the positive properties of the multinotch while dramatically increasing the numerical accuracy over a large frequency range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信