Angela Ciara R. Buela, Rodolfo Rey M. Torres, Fermin II G. Unisa, P. R. Meris, M. Manuel, Jennifer C. Dela Cruz, Roderick C. Tud
{"title":"小型涡旋无叶片风力发电机的设计与非线性静态仿真","authors":"Angela Ciara R. Buela, Rodolfo Rey M. Torres, Fermin II G. Unisa, P. R. Meris, M. Manuel, Jennifer C. Dela Cruz, Roderick C. Tud","doi":"10.1109/I2CACIS52118.2021.9495882","DOIUrl":null,"url":null,"abstract":"Wind turbines can be a replacement for coal as an energy source. However, the conventional wind turbines are expensive and are very complicated due to many mechanical components translating to high manufacturing and maintenance costs. This study aims to help improve the efficiency and design of bladeless wind power generators through generation of power using vortex induced vibration. A bladeless wind power generator was designed using Autodesk Fusion 360 wherein the prototype was modeled to be approximately 1.35 m x 0.5m x 0.5m (overall height, width, and length). A Nonlinear Static Simulation, using ANSYS®Academic Student MechanicalTM, was performed to determine the effect of two different wind velocities, 4.5 m/s and 6.5 m/s, acting on the mast. The design of the bladeless wind turbine was focused on simplifying its manufacturability by using a helical spring to connect the mast to the base while also attaining maximum vortex shedding at a low velocity. The researchers of this study used a static simulation to simplify the study. The predetermined wind velocities were converted into a pressure value, allowing the researchers to obtain the total deformation, directional deformation, and maximum principal and shear stresses (in the spring). It has been determined that the maximum deformation experienced by the bladeless wind power generator was 131.800 mm and 253.270 mm for wind velocities of 4.5 m/s and 6.5 m/s resulting to a theoretical power output of 9.765W and 29.428W, respectively.","PeriodicalId":210770,"journal":{"name":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Nonlinear Static Simulation of a Small–Scale Vortex Bladeless Wind Power Generator\",\"authors\":\"Angela Ciara R. Buela, Rodolfo Rey M. Torres, Fermin II G. Unisa, P. R. Meris, M. Manuel, Jennifer C. Dela Cruz, Roderick C. Tud\",\"doi\":\"10.1109/I2CACIS52118.2021.9495882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind turbines can be a replacement for coal as an energy source. However, the conventional wind turbines are expensive and are very complicated due to many mechanical components translating to high manufacturing and maintenance costs. This study aims to help improve the efficiency and design of bladeless wind power generators through generation of power using vortex induced vibration. A bladeless wind power generator was designed using Autodesk Fusion 360 wherein the prototype was modeled to be approximately 1.35 m x 0.5m x 0.5m (overall height, width, and length). A Nonlinear Static Simulation, using ANSYS®Academic Student MechanicalTM, was performed to determine the effect of two different wind velocities, 4.5 m/s and 6.5 m/s, acting on the mast. The design of the bladeless wind turbine was focused on simplifying its manufacturability by using a helical spring to connect the mast to the base while also attaining maximum vortex shedding at a low velocity. The researchers of this study used a static simulation to simplify the study. The predetermined wind velocities were converted into a pressure value, allowing the researchers to obtain the total deformation, directional deformation, and maximum principal and shear stresses (in the spring). It has been determined that the maximum deformation experienced by the bladeless wind power generator was 131.800 mm and 253.270 mm for wind velocities of 4.5 m/s and 6.5 m/s resulting to a theoretical power output of 9.765W and 29.428W, respectively.\",\"PeriodicalId\":210770,\"journal\":{\"name\":\"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CACIS52118.2021.9495882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS52118.2021.9495882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
风力涡轮机可以替代煤炭作为一种能源。然而,传统的风力涡轮机价格昂贵且非常复杂,因为许多机械部件转化为高制造和维护成本。本研究旨在通过涡激振动发电来提高无叶片风力发电机的效率和设计。使用Autodesk Fusion 360设计了无叶片风力发电机,其中原型模型约为1.35 m x 0.5m x 0.5m(总高度,宽度和长度)。利用ANSYS®Academic Student MechanicalTM进行了非线性静态仿真,以确定两种不同风速(4.5 m/s和6.5 m/s)对桅杆的影响。无叶片风力涡轮机的设计重点是简化其可制造性,通过使用螺旋弹簧将桅杆连接到基座,同时在低速时实现最大的涡脱落。本研究的研究人员使用静态模拟来简化研究。将预定的风速转换为压力值,使研究人员能够获得总变形,定向变形以及最大主应力和剪应力(在春季)。在风速为4.5 m/s和6.5 m/s时,无叶片风力发电机的最大变形为131.800 mm和253.270 mm,理论输出功率分别为9.765W和29.428W。
Design and Nonlinear Static Simulation of a Small–Scale Vortex Bladeless Wind Power Generator
Wind turbines can be a replacement for coal as an energy source. However, the conventional wind turbines are expensive and are very complicated due to many mechanical components translating to high manufacturing and maintenance costs. This study aims to help improve the efficiency and design of bladeless wind power generators through generation of power using vortex induced vibration. A bladeless wind power generator was designed using Autodesk Fusion 360 wherein the prototype was modeled to be approximately 1.35 m x 0.5m x 0.5m (overall height, width, and length). A Nonlinear Static Simulation, using ANSYS®Academic Student MechanicalTM, was performed to determine the effect of two different wind velocities, 4.5 m/s and 6.5 m/s, acting on the mast. The design of the bladeless wind turbine was focused on simplifying its manufacturability by using a helical spring to connect the mast to the base while also attaining maximum vortex shedding at a low velocity. The researchers of this study used a static simulation to simplify the study. The predetermined wind velocities were converted into a pressure value, allowing the researchers to obtain the total deformation, directional deformation, and maximum principal and shear stresses (in the spring). It has been determined that the maximum deformation experienced by the bladeless wind power generator was 131.800 mm and 253.270 mm for wind velocities of 4.5 m/s and 6.5 m/s resulting to a theoretical power output of 9.765W and 29.428W, respectively.