流程序中的灵活过滤器

R. Collins, L. Carloni
{"title":"流程序中的灵活过滤器","authors":"R. Collins, L. Carloni","doi":"10.1145/2539036.2539041","DOIUrl":null,"url":null,"abstract":"The stream-processing model is a natural fit for multicore systems because it exposes the inherent locality and concurrency of a program and highlights its separable tasks for efficient parallel implementations. We present flexible filters, a load-balancing optimization technique for stream programs. Flexible filters utilize the programmability of the cores in order to improve the data-processing throughput of individual bottleneck tasks by “borrowing” resources from neighbors in the stream. Our technique is distributed and scalable because all runtime load-balancing decisions are based on point-to-point handshake signals exchanged between neighboring cores. Load balancing with flexible filters increases the system-level processing throughput of stream applications, particularly those with large dynamic variations in the computational load of their tasks. We empirically evaluate flexible filters in a homogeneous multicore environment over a suite of five real-word stream programs.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible filters in stream programs\",\"authors\":\"R. Collins, L. Carloni\",\"doi\":\"10.1145/2539036.2539041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stream-processing model is a natural fit for multicore systems because it exposes the inherent locality and concurrency of a program and highlights its separable tasks for efficient parallel implementations. We present flexible filters, a load-balancing optimization technique for stream programs. Flexible filters utilize the programmability of the cores in order to improve the data-processing throughput of individual bottleneck tasks by “borrowing” resources from neighbors in the stream. Our technique is distributed and scalable because all runtime load-balancing decisions are based on point-to-point handshake signals exchanged between neighboring cores. Load balancing with flexible filters increases the system-level processing throughput of stream applications, particularly those with large dynamic variations in the computational load of their tasks. We empirically evaluate flexible filters in a homogeneous multicore environment over a suite of five real-word stream programs.\",\"PeriodicalId\":183677,\"journal\":{\"name\":\"ACM Trans. Embed. Comput. Syst.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Embed. Comput. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2539036.2539041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2539036.2539041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流处理模型非常适合多核系统,因为它暴露了程序固有的局部性和并发性,并突出了其可分离的任务,以实现高效的并行实现。我们提出了一种灵活的过滤器,一种用于流程序的负载平衡优化技术。灵活的过滤器利用核心的可编程性,通过从流中的邻居“借用”资源来提高单个瓶颈任务的数据处理吞吐量。我们的技术是分布式和可扩展的,因为所有运行时负载平衡决策都基于相邻核心之间交换的点对点握手信号。使用灵活过滤器的负载平衡增加了流应用程序的系统级处理吞吐量,特别是那些在其任务的计算负载中具有较大动态变化的应用程序。我们经验地评估灵活的过滤器在一个同质的多核环境超过一套五个真实世界的流程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible filters in stream programs
The stream-processing model is a natural fit for multicore systems because it exposes the inherent locality and concurrency of a program and highlights its separable tasks for efficient parallel implementations. We present flexible filters, a load-balancing optimization technique for stream programs. Flexible filters utilize the programmability of the cores in order to improve the data-processing throughput of individual bottleneck tasks by “borrowing” resources from neighbors in the stream. Our technique is distributed and scalable because all runtime load-balancing decisions are based on point-to-point handshake signals exchanged between neighboring cores. Load balancing with flexible filters increases the system-level processing throughput of stream applications, particularly those with large dynamic variations in the computational load of their tasks. We empirically evaluate flexible filters in a homogeneous multicore environment over a suite of five real-word stream programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信