网络滥用的识别及其抑制

Ewit
{"title":"网络滥用的识别及其抑制","authors":"Ewit","doi":"10.30534/ijccn/2018/06722018","DOIUrl":null,"url":null,"abstract":"Online abuse is an act of attacking an individual repeatedly with an intent to harm. This has a very disturbing effect on many individual irrespective of the age group. In this paper, we propose a new representation learning method to solve this problem. Our method named Naïve Bayes classifier is a simple probabilistic classifier based on Bayes’ theorem with naïve independence assumptions between the features. Naive Bayes is an highly scalable with different number of parameters linear in number of predictors in a learning problem. The proposed method is able to exploit the hidden feature structure of abusive information and learn a robust and discriminative representation of text. We have implemented our algorithm using five lakhs of tweets and around one thousands of users.","PeriodicalId":313852,"journal":{"name":"International Journal of Computing, Communications and Networking","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Online Abuse and It’s Inhibition\",\"authors\":\"Ewit\",\"doi\":\"10.30534/ijccn/2018/06722018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online abuse is an act of attacking an individual repeatedly with an intent to harm. This has a very disturbing effect on many individual irrespective of the age group. In this paper, we propose a new representation learning method to solve this problem. Our method named Naïve Bayes classifier is a simple probabilistic classifier based on Bayes’ theorem with naïve independence assumptions between the features. Naive Bayes is an highly scalable with different number of parameters linear in number of predictors in a learning problem. The proposed method is able to exploit the hidden feature structure of abusive information and learn a robust and discriminative representation of text. We have implemented our algorithm using five lakhs of tweets and around one thousands of users.\",\"PeriodicalId\":313852,\"journal\":{\"name\":\"International Journal of Computing, Communications and Networking\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing, Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30534/ijccn/2018/06722018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30534/ijccn/2018/06722018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络虐待是一种以伤害为目的反复攻击个人的行为。这对任何年龄段的人都有非常令人不安的影响。本文提出了一种新的表征学习方法来解决这一问题。我们的方法Naïve贝叶斯分类器是一个基于贝叶斯定理的简单概率分类器,特征之间具有naïve独立性假设。朴素贝叶斯是一种高度可扩展的方法,在学习问题中,不同数量的参数与预测器的数量呈线性关系。该方法能够利用滥用信息的隐藏特征结构,学习具有鲁棒性和判别性的文本表示。我们使用了50万条推文和大约1000名用户来实现我们的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Online Abuse and It’s Inhibition
Online abuse is an act of attacking an individual repeatedly with an intent to harm. This has a very disturbing effect on many individual irrespective of the age group. In this paper, we propose a new representation learning method to solve this problem. Our method named Naïve Bayes classifier is a simple probabilistic classifier based on Bayes’ theorem with naïve independence assumptions between the features. Naive Bayes is an highly scalable with different number of parameters linear in number of predictors in a learning problem. The proposed method is able to exploit the hidden feature structure of abusive information and learn a robust and discriminative representation of text. We have implemented our algorithm using five lakhs of tweets and around one thousands of users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信