GPU上SpMV的多类SVM稀疏矩阵格式选择

Akrem Benatia, Weixing Ji, Yizhuo Wang, Feng Shi
{"title":"GPU上SpMV的多类SVM稀疏矩阵格式选择","authors":"Akrem Benatia, Weixing Ji, Yizhuo Wang, Feng Shi","doi":"10.1109/ICPP.2016.64","DOIUrl":null,"url":null,"abstract":"Sparse Matrix-Vector Multiplication (SpMV) kernel dominates the computing cost in numerous scientific applications. Many implementations based on different sparse formats were proposed recently for this kernel on the GPU side. Since the performance of these sparse formats varies significantly according to the sparsity characteristics of the input matrix and the hardware specifications, no one of them can be considered as the best one to use for every sparse matrix. In this paper, we address the problem of selecting the best representation for a given sparse matrix on GPU by using a machine learning approach. First, we present some interesting and easy to compute features for characterizing the sparse matrices on GPU. Second, we use a multiclass Support Vector Machine (SVM) classifier to select the best format for each input matrix. We consider in this paper four popular formats (COO, CSR, ELL, and HYB), but our work can be extended to support more sparse representations. Experimental results on two different GPUs (Fermi GTX 580 and Maxwell GTX 980 Ti) show that we achieved more than 98% of the performance possible with a perfect selection.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Sparse Matrix Format Selection with Multiclass SVM for SpMV on GPU\",\"authors\":\"Akrem Benatia, Weixing Ji, Yizhuo Wang, Feng Shi\",\"doi\":\"10.1109/ICPP.2016.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse Matrix-Vector Multiplication (SpMV) kernel dominates the computing cost in numerous scientific applications. Many implementations based on different sparse formats were proposed recently for this kernel on the GPU side. Since the performance of these sparse formats varies significantly according to the sparsity characteristics of the input matrix and the hardware specifications, no one of them can be considered as the best one to use for every sparse matrix. In this paper, we address the problem of selecting the best representation for a given sparse matrix on GPU by using a machine learning approach. First, we present some interesting and easy to compute features for characterizing the sparse matrices on GPU. Second, we use a multiclass Support Vector Machine (SVM) classifier to select the best format for each input matrix. We consider in this paper four popular formats (COO, CSR, ELL, and HYB), but our work can be extended to support more sparse representations. Experimental results on two different GPUs (Fermi GTX 580 and Maxwell GTX 980 Ti) show that we achieved more than 98% of the performance possible with a perfect selection.\",\"PeriodicalId\":409991,\"journal\":{\"name\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2016.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

稀疏矩阵向量乘法(SpMV)核在许多科学应用中占据着计算成本的主导地位。最近在GPU端针对该内核提出了许多基于不同稀疏格式的实现。由于这些稀疏格式的性能根据输入矩阵的稀疏性特征和硬件规格而有很大差异,因此没有一种格式可以被认为是适用于每个稀疏矩阵的最佳格式。在本文中,我们使用机器学习方法解决了在GPU上选择给定稀疏矩阵的最佳表示的问题。首先,我们提出了一些有趣且易于计算的特征来描述GPU上的稀疏矩阵。其次,我们使用多类支持向量机(SVM)分类器为每个输入矩阵选择最佳格式。我们在本文中考虑了四种流行的格式(COO、CSR、ELL和HYB),但我们的工作可以扩展到支持更稀疏的表示。在两种不同的gpu (Fermi GTX 580和Maxwell GTX 980 Ti)上的实验结果表明,我们在完美的选择下实现了超过98%的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Matrix Format Selection with Multiclass SVM for SpMV on GPU
Sparse Matrix-Vector Multiplication (SpMV) kernel dominates the computing cost in numerous scientific applications. Many implementations based on different sparse formats were proposed recently for this kernel on the GPU side. Since the performance of these sparse formats varies significantly according to the sparsity characteristics of the input matrix and the hardware specifications, no one of them can be considered as the best one to use for every sparse matrix. In this paper, we address the problem of selecting the best representation for a given sparse matrix on GPU by using a machine learning approach. First, we present some interesting and easy to compute features for characterizing the sparse matrices on GPU. Second, we use a multiclass Support Vector Machine (SVM) classifier to select the best format for each input matrix. We consider in this paper four popular formats (COO, CSR, ELL, and HYB), but our work can be extended to support more sparse representations. Experimental results on two different GPUs (Fermi GTX 580 and Maxwell GTX 980 Ti) show that we achieved more than 98% of the performance possible with a perfect selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信