大型系统中线性二次型调节器问题的稀疏解

F. Freitas, A. Simões Costa
{"title":"大型系统中线性二次型调节器问题的稀疏解","authors":"F. Freitas, A. Simões Costa","doi":"10.1109/MWSCAS.1995.510336","DOIUrl":null,"url":null,"abstract":"This paper presents a computationally efficient method for calculating the optimal feedback gain applicable to large scale systems. The plant is represented by using descriptor systems and the gain is calculated directly through the numerical integration of the Chandrasekhar equations. This allows the application of modern sparsity techniques, thus reducing the computational burden. Tests in two dynamic systems are conducted in order to assess the performance of the proposed method as compared with other techniques based on the conventional solution of the algebraic Riccati equation.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse solution of the linear quadratic regulator problem for large scale systems applications\",\"authors\":\"F. Freitas, A. Simões Costa\",\"doi\":\"10.1109/MWSCAS.1995.510336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a computationally efficient method for calculating the optimal feedback gain applicable to large scale systems. The plant is represented by using descriptor systems and the gain is calculated directly through the numerical integration of the Chandrasekhar equations. This allows the application of modern sparsity techniques, thus reducing the computational burden. Tests in two dynamic systems are conducted in order to assess the performance of the proposed method as compared with other techniques based on the conventional solution of the algebraic Riccati equation.\",\"PeriodicalId\":165081,\"journal\":{\"name\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1995.510336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.510336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种适用于大型系统的最优反馈增益计算方法。用广义系统表示对象,并通过钱德拉塞卡方程的数值积分直接计算增益。这允许应用现代稀疏性技术,从而减少计算负担。在两个动态系统中进行了测试,以评估该方法的性能,并与其他基于代数Riccati方程的传统解的技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse solution of the linear quadratic regulator problem for large scale systems applications
This paper presents a computationally efficient method for calculating the optimal feedback gain applicable to large scale systems. The plant is represented by using descriptor systems and the gain is calculated directly through the numerical integration of the Chandrasekhar equations. This allows the application of modern sparsity techniques, thus reducing the computational burden. Tests in two dynamic systems are conducted in order to assess the performance of the proposed method as compared with other techniques based on the conventional solution of the algebraic Riccati equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信