基于低边界高度估计的自动驾驶汽车高密度地面地图

Alexander Carballo, E. Takeuchi, K. Takeda
{"title":"基于低边界高度估计的自动驾驶汽车高密度地面地图","authors":"Alexander Carballo, E. Takeuchi, K. Takeda","doi":"10.1109/ITSC.2018.8569764","DOIUrl":null,"url":null,"abstract":"In this work we propose a new method to create high density ground maps for autonomous vehicles based on low boundary elevation estimation. Ground maps are created using ray casting of laser beams in 3D LiDAR data accumulated over time and computing the lower elevation data between 3D LiDAR scans. This lower boundary works as a low envelope of the accumulated point cloud. Our lower boundary ground maps approach is not affected by moving objects on the road, and produces high density maps even with coarse vertical resolution 3D LiDARs, works on long curved roads with different elevations, and it is computationally efficient. As proof of concept, we present an application for real-time obstacle and ground segmentation of 3D LiDAR data using our ground maps.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High Density Ground Maps using Low Boundary Height Estimation for Autonomous Vehicles\",\"authors\":\"Alexander Carballo, E. Takeuchi, K. Takeda\",\"doi\":\"10.1109/ITSC.2018.8569764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a new method to create high density ground maps for autonomous vehicles based on low boundary elevation estimation. Ground maps are created using ray casting of laser beams in 3D LiDAR data accumulated over time and computing the lower elevation data between 3D LiDAR scans. This lower boundary works as a low envelope of the accumulated point cloud. Our lower boundary ground maps approach is not affected by moving objects on the road, and produces high density maps even with coarse vertical resolution 3D LiDARs, works on long curved roads with different elevations, and it is computationally efficient. As proof of concept, we present an application for real-time obstacle and ground segmentation of 3D LiDAR data using our ground maps.\",\"PeriodicalId\":395239,\"journal\":{\"name\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2018.8569764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们提出了一种基于低边界高程估计的自动驾驶汽车高密度地面地图的新方法。地形图是通过对3D激光雷达数据中积累的激光束进行光线投射,并计算3D激光雷达扫描之间的低海拔数据而创建的。这个较低的边界作为累积点云的低包络线。我们的下边界地面地图方法不受道路上移动物体的影响,即使使用粗垂直分辨率3D激光雷达也能生成高密度地图,适用于不同海拔的长弯曲道路,并且计算效率高。作为概念验证,我们提出了一个使用我们的地面地图对3D激光雷达数据进行实时障碍物和地面分割的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Density Ground Maps using Low Boundary Height Estimation for Autonomous Vehicles
In this work we propose a new method to create high density ground maps for autonomous vehicles based on low boundary elevation estimation. Ground maps are created using ray casting of laser beams in 3D LiDAR data accumulated over time and computing the lower elevation data between 3D LiDAR scans. This lower boundary works as a low envelope of the accumulated point cloud. Our lower boundary ground maps approach is not affected by moving objects on the road, and produces high density maps even with coarse vertical resolution 3D LiDARs, works on long curved roads with different elevations, and it is computationally efficient. As proof of concept, we present an application for real-time obstacle and ground segmentation of 3D LiDAR data using our ground maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信