用负数据训练的神经网络分类器识别手写数字字符串

Ho-Yon Kim, Kil-Taek Lim, Yun-Seok Nam
{"title":"用负数据训练的神经网络分类器识别手写数字字符串","authors":"Ho-Yon Kim, Kil-Taek Lim, Yun-Seok Nam","doi":"10.1109/IWFHR.2002.1030942","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the behavior of neural network classifiers with the negative data, and develop an off-line handwritten numeral string recognition system based on the neural network classifier that uses negative data when estimating parameters. For numeral string recognition, it is attempted to generate all plausible segmentation candidates by character segmentation, which is followed by recognizing the segmentation candidates and finding an optimal segmentation path. In the preliminary experiments for numeral string recognition, the recognition rate of the classifier trained with both positive data and negative data is much higher than the recognition rate of the classifier trained with only positive data. This is because the classifier trained with negative data produces low matching scores for noncharacters, which enables the numeral string recognizer to exclude non-characters from the segmentation alternatives, so it helps the numeral string recognizer to find correct character segmentation paths.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Handwritten numeral string recognition using neural network classifier trained with negative data\",\"authors\":\"Ho-Yon Kim, Kil-Taek Lim, Yun-Seok Nam\",\"doi\":\"10.1109/IWFHR.2002.1030942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the behavior of neural network classifiers with the negative data, and develop an off-line handwritten numeral string recognition system based on the neural network classifier that uses negative data when estimating parameters. For numeral string recognition, it is attempted to generate all plausible segmentation candidates by character segmentation, which is followed by recognizing the segmentation candidates and finding an optimal segmentation path. In the preliminary experiments for numeral string recognition, the recognition rate of the classifier trained with both positive data and negative data is much higher than the recognition rate of the classifier trained with only positive data. This is because the classifier trained with negative data produces low matching scores for noncharacters, which enables the numeral string recognizer to exclude non-characters from the segmentation alternatives, so it helps the numeral string recognizer to find correct character segmentation paths.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们研究了神经网络分类器对负数据的行为,并开发了一个基于神经网络分类器的离线手写数字字符串识别系统,该系统在估计参数时使用负数据。对于数字字符串识别,首先尝试通过字符分割生成所有可能的分割候选者,然后进行分割候选者的识别并寻找最优分割路径。在数字字符串识别的初步实验中,同时使用正数据和负数据训练的分类器的识别率远远高于仅使用正数据训练的分类器的识别率。这是因为使用负数据训练的分类器对非字符产生较低的匹配分数,这使得数字字符串识别器能够从分割备选方案中排除非字符,从而帮助数字字符串识别器找到正确的字符分割路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwritten numeral string recognition using neural network classifier trained with negative data
In this paper, we investigate the behavior of neural network classifiers with the negative data, and develop an off-line handwritten numeral string recognition system based on the neural network classifier that uses negative data when estimating parameters. For numeral string recognition, it is attempted to generate all plausible segmentation candidates by character segmentation, which is followed by recognizing the segmentation candidates and finding an optimal segmentation path. In the preliminary experiments for numeral string recognition, the recognition rate of the classifier trained with both positive data and negative data is much higher than the recognition rate of the classifier trained with only positive data. This is because the classifier trained with negative data produces low matching scores for noncharacters, which enables the numeral string recognizer to exclude non-characters from the segmentation alternatives, so it helps the numeral string recognizer to find correct character segmentation paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信