通用编码中极大极小冗余的渐近性

W. Szpankowski
{"title":"通用编码中极大极小冗余的渐近性","authors":"W. Szpankowski","doi":"10.1109/ISIT.1998.708954","DOIUrl":null,"url":null,"abstract":"Let x/sup n/ denote a sequence built over a finite alphabet A, and let P(x/sup n/;w) be the probability of x/sup n/ generated by the source w. We define a uniquely decodable code /spl phi/(x/sup n/) of length |/spl phi/(x/sup n/)|=-logQ(x/sup n/) where Q(/spl middot/) is an arbitrary probability distribution on A/sup n/. The cumulative redundancy of the encoding x/sup n/ at the output of a source w is defined as p(x/sup n/;/spl phi//sub n/,w):=-logQ(x/sup n/)+logP(x/sup n/). Finally, let us consider a set of sources /spl Omega/, and define the minimax redundancy as p/sub n/(/spl Omega/):=inf/sub /spl phi/n/sup/sub w/spl isin//spl Omega//max/sub xn/spl isin/An/{p(x/sup n/;/spl phi//sub n/,w)}. We study asymptotically /spl rho//sub n/(/spl Omega/) for memoryless sources via analytic methods.","PeriodicalId":133728,"journal":{"name":"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the asymptotics of the minimax redundancy arising in a universal coding\",\"authors\":\"W. Szpankowski\",\"doi\":\"10.1109/ISIT.1998.708954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let x/sup n/ denote a sequence built over a finite alphabet A, and let P(x/sup n/;w) be the probability of x/sup n/ generated by the source w. We define a uniquely decodable code /spl phi/(x/sup n/) of length |/spl phi/(x/sup n/)|=-logQ(x/sup n/) where Q(/spl middot/) is an arbitrary probability distribution on A/sup n/. The cumulative redundancy of the encoding x/sup n/ at the output of a source w is defined as p(x/sup n/;/spl phi//sub n/,w):=-logQ(x/sup n/)+logP(x/sup n/). Finally, let us consider a set of sources /spl Omega/, and define the minimax redundancy as p/sub n/(/spl Omega/):=inf/sub /spl phi/n/sup/sub w/spl isin//spl Omega//max/sub xn/spl isin/An/{p(x/sup n/;/spl phi//sub n/,w)}. We study asymptotically /spl rho//sub n/(/spl Omega/) for memoryless sources via analytic methods.\",\"PeriodicalId\":133728,\"journal\":{\"name\":\"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1998.708954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1998.708954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设x/sup n/表示在有限字母a上建立的序列,设P(x/sup n/;w)是由源w生成的x/sup n/的概率。我们定义了一个长度为|/spl phi/(x/sup n/)|=-logQ(x/sup n/)的唯一可解码码/spl phi/(x/sup n/),其中Q(/spl middot/)是a /sup n/上的任意概率分布。编码x/sup n/在源w的输出处的累积冗余定义为p(x/sup n/;/spl phi//sub n/,w):=-logQ(x/sup n/)+logP(x/sup n/)。最后,让我们考虑一组源/spl Omega/,并定义极大极小冗余为p/sub n/(/spl Omega/):=inf/sub /spl phi/n/sup/sub w/spl isin//spl Omega//max/sub xn/spl isin/An/{p(x/sup n/;/spl phi//sub n/,w)}。我们用解析方法研究了无记忆源的渐近性/spl rho//sub n/(/spl Omega/)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the asymptotics of the minimax redundancy arising in a universal coding
Let x/sup n/ denote a sequence built over a finite alphabet A, and let P(x/sup n/;w) be the probability of x/sup n/ generated by the source w. We define a uniquely decodable code /spl phi/(x/sup n/) of length |/spl phi/(x/sup n/)|=-logQ(x/sup n/) where Q(/spl middot/) is an arbitrary probability distribution on A/sup n/. The cumulative redundancy of the encoding x/sup n/ at the output of a source w is defined as p(x/sup n/;/spl phi//sub n/,w):=-logQ(x/sup n/)+logP(x/sup n/). Finally, let us consider a set of sources /spl Omega/, and define the minimax redundancy as p/sub n/(/spl Omega/):=inf/sub /spl phi/n/sup/sub w/spl isin//spl Omega//max/sub xn/spl isin/An/{p(x/sup n/;/spl phi//sub n/,w)}. We study asymptotically /spl rho//sub n/(/spl Omega/) for memoryless sources via analytic methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信