{"title":"通用编码中极大极小冗余的渐近性","authors":"W. Szpankowski","doi":"10.1109/ISIT.1998.708954","DOIUrl":null,"url":null,"abstract":"Let x/sup n/ denote a sequence built over a finite alphabet A, and let P(x/sup n/;w) be the probability of x/sup n/ generated by the source w. We define a uniquely decodable code /spl phi/(x/sup n/) of length |/spl phi/(x/sup n/)|=-logQ(x/sup n/) where Q(/spl middot/) is an arbitrary probability distribution on A/sup n/. The cumulative redundancy of the encoding x/sup n/ at the output of a source w is defined as p(x/sup n/;/spl phi//sub n/,w):=-logQ(x/sup n/)+logP(x/sup n/). Finally, let us consider a set of sources /spl Omega/, and define the minimax redundancy as p/sub n/(/spl Omega/):=inf/sub /spl phi/n/sup/sub w/spl isin//spl Omega//max/sub xn/spl isin/An/{p(x/sup n/;/spl phi//sub n/,w)}. We study asymptotically /spl rho//sub n/(/spl Omega/) for memoryless sources via analytic methods.","PeriodicalId":133728,"journal":{"name":"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the asymptotics of the minimax redundancy arising in a universal coding\",\"authors\":\"W. Szpankowski\",\"doi\":\"10.1109/ISIT.1998.708954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let x/sup n/ denote a sequence built over a finite alphabet A, and let P(x/sup n/;w) be the probability of x/sup n/ generated by the source w. We define a uniquely decodable code /spl phi/(x/sup n/) of length |/spl phi/(x/sup n/)|=-logQ(x/sup n/) where Q(/spl middot/) is an arbitrary probability distribution on A/sup n/. The cumulative redundancy of the encoding x/sup n/ at the output of a source w is defined as p(x/sup n/;/spl phi//sub n/,w):=-logQ(x/sup n/)+logP(x/sup n/). Finally, let us consider a set of sources /spl Omega/, and define the minimax redundancy as p/sub n/(/spl Omega/):=inf/sub /spl phi/n/sup/sub w/spl isin//spl Omega//max/sub xn/spl isin/An/{p(x/sup n/;/spl phi//sub n/,w)}. We study asymptotically /spl rho//sub n/(/spl Omega/) for memoryless sources via analytic methods.\",\"PeriodicalId\":133728,\"journal\":{\"name\":\"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1998.708954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1998.708954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the asymptotics of the minimax redundancy arising in a universal coding
Let x/sup n/ denote a sequence built over a finite alphabet A, and let P(x/sup n/;w) be the probability of x/sup n/ generated by the source w. We define a uniquely decodable code /spl phi/(x/sup n/) of length |/spl phi/(x/sup n/)|=-logQ(x/sup n/) where Q(/spl middot/) is an arbitrary probability distribution on A/sup n/. The cumulative redundancy of the encoding x/sup n/ at the output of a source w is defined as p(x/sup n/;/spl phi//sub n/,w):=-logQ(x/sup n/)+logP(x/sup n/). Finally, let us consider a set of sources /spl Omega/, and define the minimax redundancy as p/sub n/(/spl Omega/):=inf/sub /spl phi/n/sup/sub w/spl isin//spl Omega//max/sub xn/spl isin/An/{p(x/sup n/;/spl phi//sub n/,w)}. We study asymptotically /spl rho//sub n/(/spl Omega/) for memoryless sources via analytic methods.