用地理标记的推文注释兴趣点

Kaiqi Zhao, G. Cong, Aixin Sun
{"title":"用地理标记的推文注释兴趣点","authors":"Kaiqi Zhao, G. Cong, Aixin Sun","doi":"10.1145/2983323.2983850","DOIUrl":null,"url":null,"abstract":"Microblogging services like Twitter contain abundant of user generated content covering a wide range of topics. Many of the tweets can be associated to real-world entities for providing additional information for the latter. In this paper, we aim to associate tweets that are semantically related to real-world locations or Points of Interest (POIs). Tweets contain dynamic and real-time information while POIs contain relatively static information. The tweets associated with POIs provide complementary information for many applications like opinion mining and POI recommendation; the associated POIs can also be used as POI tags in Twitter. We define the research problem of annotating POIs with tweets and propose a novel supervised Bayesian Model (sBM). The model takes into account the textual, spatial features and user behaviors together with the supervised information of whether a tweet is POI-related. It is able to capture user interests in latent regions for the prediction of whether a tweet is POI-related and the association between the tweet and its most semantically related POI. On tweets and POIs collected for two cities (New York City and Singapore), we demonstrate the effectiveness of our models against baseline methods.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Annotating Points of Interest with Geo-tagged Tweets\",\"authors\":\"Kaiqi Zhao, G. Cong, Aixin Sun\",\"doi\":\"10.1145/2983323.2983850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microblogging services like Twitter contain abundant of user generated content covering a wide range of topics. Many of the tweets can be associated to real-world entities for providing additional information for the latter. In this paper, we aim to associate tweets that are semantically related to real-world locations or Points of Interest (POIs). Tweets contain dynamic and real-time information while POIs contain relatively static information. The tweets associated with POIs provide complementary information for many applications like opinion mining and POI recommendation; the associated POIs can also be used as POI tags in Twitter. We define the research problem of annotating POIs with tweets and propose a novel supervised Bayesian Model (sBM). The model takes into account the textual, spatial features and user behaviors together with the supervised information of whether a tweet is POI-related. It is able to capture user interests in latent regions for the prediction of whether a tweet is POI-related and the association between the tweet and its most semantically related POI. On tweets and POIs collected for two cities (New York City and Singapore), we demonstrate the effectiveness of our models against baseline methods.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

像Twitter这样的微博服务包含了大量用户生成的内容,涵盖了广泛的主题。许多tweet可以与现实世界的实体相关联,以便为后者提供额外的信息。在本文中,我们的目标是将语义上与现实世界位置或兴趣点(POIs)相关的推文关联起来。Tweets包含动态和实时的信息,而poi包含相对静态的信息。与POI相关的推文为许多应用提供了补充信息,如意见挖掘和POI推荐;相关的POI也可以在Twitter中用作POI标记。定义了推文标注poi的研究问题,提出了一种新的监督贝叶斯模型(sBM)。该模型考虑了推文的文本特征、空间特征和用户行为,以及推文是否与poi相关的监督信息。它能够捕捉潜在区域的用户兴趣,以预测推文是否与POI相关,以及推文与其语义上最相关的POI之间的关联。在两个城市(纽约市和新加坡)收集的tweet和poi上,我们针对基线方法展示了我们的模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annotating Points of Interest with Geo-tagged Tweets
Microblogging services like Twitter contain abundant of user generated content covering a wide range of topics. Many of the tweets can be associated to real-world entities for providing additional information for the latter. In this paper, we aim to associate tweets that are semantically related to real-world locations or Points of Interest (POIs). Tweets contain dynamic and real-time information while POIs contain relatively static information. The tweets associated with POIs provide complementary information for many applications like opinion mining and POI recommendation; the associated POIs can also be used as POI tags in Twitter. We define the research problem of annotating POIs with tweets and propose a novel supervised Bayesian Model (sBM). The model takes into account the textual, spatial features and user behaviors together with the supervised information of whether a tweet is POI-related. It is able to capture user interests in latent regions for the prediction of whether a tweet is POI-related and the association between the tweet and its most semantically related POI. On tweets and POIs collected for two cities (New York City and Singapore), we demonstrate the effectiveness of our models against baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信